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A B S T R A C T

Neurodegenerative diseases are caused by the progressive degeneration of nerve cells that affect motor skills
and cognitive abilities with increasing severity. Unfortunately, there is no cure for this type of disease and their
impact can only be slowed down with specific pharmacological and rehabilitative therapies. Early diagnosis,
therefore, remains the primary means to delay brain damage and improve the quality of life of people affected.
Neurodegenerative diseases also affect movement fine control. Consequently, the analysis of handwriting
dynamics can represent an effective tool to support an early diagnosis of these diseases. While many methods
have been proposed in the literature based on the use of a wide range of handwriting tasks, researchers have
not yet defined a universally accepted standard experimental protocol to collect data. Furthermore, although
some databases containing handwriting data have been produced, only a few of them were designed specifically
for research on neurodegenerative diseases, and, in most cases, they involve a small number of participants
performing a few tasks. Here, we introduce the DARWIN (Diagnosis AlzheimeR WIth haNdwriting) dataset to
overcome these drawbacks, which contains handwriting samples from people affected by Alzheimer’s and a
control group. The dataset includes data from 174 participants, acquired during the execution of handwriting
tasks, performed according to a protocol specifically designed for the early detection of Alzheimer’s. We report
the results of the experiments performed to evaluate the effectiveness of the proposed tasks and features in
capturing the distinctive aspects of handwriting that support the diagnosis of Alzheimer’s disease.
. Introduction

Neurodegenerative diseases (NDs in the following) are incurable
nd debilitating conditions caused by progressive degeneration of
erve cells. They may affect movements and/or mental skills, with
lzheimer’s and Parkinson’s diseases (respectively PD and AD in the

ollowing) being the most common among them.
PD mainly affects the motor system, and the most common symp-

oms are tremor, rigidity, slowness of movement, and difficulty with
alking. As the disease worsens, cognitive symptoms, usually referred
s Parkinson’s disease dementia, become common. The motor symp-
oms of the disease result from the death of cells in the substantia
igra, a region of the midbrain, leading to a dopamine deficit (Kalia
nd Lang, 2015). AD produces a slow and progressive decline in mental
unctions such as memory, thought, judgment, and learning abilities. In
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the early stages of the disease, the predominant symptom is the episodic
memory impairment that is indicative of ventromedial temporal lobe
dysfunction (Armstrong et al., 2013). After that, it is typically followed
by progressive amnesia and deterioration in other cognitive domains,
showing pathological involvement of more widespread neural systems.

There is no cure for these diseases and the decline can only be
somehow managed during their progression. Because of worldwide
lifespan lengthening, it is expected that the incidence of NDs will
dramatically increase in the coming decades. This creates a critical
need for the improvement of the approaches currently used for diag-
nosing them as early as possible. As cognitive and motor functions are
both involved in planning and execution of movements, and because
handwriting requires a precise and properly coordinated control of the
body (Precup et al., 2020), the analysis of handwriting dynamics might
provide a cheap and non-invasive method for evaluating the disease
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progression (Impedovo et al., 2018). Furthermore, it has been observed
that the application of machine learning methods to motor function has
shown promise in decreasing the time taken to perform clinical assess-
ments (Myszczynska et al., 2020a; Albu et al., 2019). To this aim, cheap
and widely used graphic tablets can be used to administer handwriting
tests, which include simple and easy-to-perform handwriting/drawing
tasks (Impedovo et al., 2018), and to record kinematic and dynamic
information of the performed movements. For this reason, researchers
are showing an increasing interest in developing and using machine
learning based methodologies to support both the diagnosis and the
treatment of NDs, and several methods have been proposed for the
diagnosis of both AD (Tanveer et al., 2020) and PD (Pereira et al.,
2019).

An effective evaluation of handwriting alterations requires the defi-
nition of general criteria for carrying out tests able to highlight the first
ND signs. The methods proposed in the literature make use of a wide
range of tasks, features and classifiers (Vessio, 2019; Pozna and Precup,
2014). However, previous studies did not use sufficiently large datasets
or an agreed set of features. To overcome these drawbacks, we have de-
fined a protocol for handwriting data collection and suggested a set of
features to be extracted. Both are based on findings in neuroscience and
motor control regarding the role played by different brain areas of the
brain in learning and executing handwriting and drawing tasks (Cilia
et al., 2018) and how their malfunctioning is reflected in the execution
of the tasks (Senatore and Marcelli, 2019a). The protocol is comprised
of 25 tasks, with different levels of complexity and targeting different
areas of the brain. The handwriting/drawing movements performed to
execute each task are then described by using 18 features. Our prelimi-
nary results on the dataset showed that different tasks complement each
others in such a way that the combination of the information brought
by the execution of each of them led to a multi-classifier achieving
state-of-the-art performance (De Gregorio et al., 2021).

In this paper, we present in detail the procedure we have used for
recruiting the participants, both AD patients and healthy people, and
for collecting the handwriting data making up the DARWIN dataset
(Diagnosis AlzheimeR WIth haNdwriting). We also describe a large set
of experiments we have performed for validating the rationale behind
the protocol design, the ability of the proposed feature set to capture
the distinctive aspects of the movements performed while executing
the task, and to what extent they can be exploited by a machine
learning based system to effectively discriminate between AD patients
and healthy people. To this purpose, we have systematically evaluated
how the parameters characterizing the systems we have developed
affect the overall performance, and performed a statistical analysis of
the results, with the ultimate goal of providing solid evidence to the
viability of handwriting analysis as a tool to support the diagnosis of
AD.

The main contributions of the paper can be summarized as follows:

• a novel dataset containing handwriting data for the prediction
of AD. The dataset is the largest publicly available in terms of
the number of participants and the number of tasks performed.2
This data will contribute to: (i) overcome the lack of data, one
of the major limitations of the previous studies; (ii) favor a fair
performance comparison of existing and future methodologies
and tools for AD prediction via handwriting analysis;

• the results of a large set of experiments, designed and performed
with the aim of: (i) evaluating the effectiveness of the proposed
features set to discriminate between AD patients and healthy
people when exploited by well-known and widely-used classifiers;
(ii) evaluating to what extent the different tasks envisaged by the
protocol contribute valuable diagnostic information; (iii) provid-
ing researchers working in the field with some baseline results
on the data proposed, to favor comparison between different
approaches to the automatic diagnosis of AD.

2 The dataset is available at the following page: http://webuser.unicas.it/
ontanella/darwin.
2

The remainder of the paper is organized as follows. Section 2
discusses the related work, whereas Section 3 describes how the data
have been collected and the features extracted. Section 4 presents
the architectures we have adopted for performance benchmarking,
whereas Section 5 outlines the classification models used to validate
our protocol as well as the set of features extracted. Section 6 describes
the experiments we have performed and reports the results we have ob-
tained. Concluding remarks and outline of possible future investigations
are eventually left to Section 7.

2. Related work

In the last few years Machine learning based tools are demonstrating
their ability to solve a wide spectrum of real-world problems (Jain
et al., 2019; Borlea et al., 2021). However, to be used effectively,
these tools need benchmark data which allows a fair comparison of the
solutions viable for a given problem.

As mentioned in the Introduction, most of the publicly available
datasets contain handwriting data from PD patients, and most of them
were collected from small groups of participants. The Parkinson’s Dis-
ease Handwriting Database (PaHaW) consists of handwritten words in
the Czech language. They were collected from 37 participants affected
by PD and a control group made of 38 people (P. Drotár et al., 2013).
The authors of this study selected words that allowed participants
to write without lifting the pen from the writing surface. Data were
acquired using a tablet overlaid with a white template paper and a
conventional ink pen.

The HandPD dataset contains data of handwriting/drawing tasks,
collected from 92 participants (18 healthy controls and 74 PD patients).
It contains images of the handwriting data produced by the participants
while tracing four copy of spirals and meanders (Pereira et al., 2016a).
The new version of the dataset, called NewHandPD contains data from
66 participants (35 healthy people and 31 patients). Each individual
was requested to execute twelve drawing tasks, four of them related
to spirals and four related to meanders as in the HandPD dataset, two
tasks involving circular movements (one circle in the air and another
on the paper), and left and right-handed diadochokinesis. During the
execution of the tasks, the handwritten dynamics was recorded by using
the BiSP smart pen (Pereira et al., 2016b).

The ParkinsonHW dataset (Isenkul et al., 2014), contains handwrit-
ing data from 77 participants (62 PD patients and 15 healthy people).
They performed the following tasks:

• static spiral test (SST): three Archimedean spirals were displayed
on the tablet screen and participants were asked to retrace the
spiral;

• dynamic spiral test (DST): the Archimedean spiral to retrace
appeared and disappeared at a given time intervals;

• stability test on a certain point (STCP): a red point was displayed
in the middle of the tablet screen and participants were asked to
hold the pen on the point, but without touching the screen.

The data also include the images of the spirals drawn by the PD
patients.

The availability of these datasets has favored the development of
many studies, using different combinations of features and classifiers,
and the reported results, although not always directly comparable,
allows for a reliable estimation of the performance of the state-of-the-
art methods (P. Drotár et al., 2013; Drotár et al., 2016; Pereira et al.,
2019; Myszczynska et al., 2020b; Parziale et al., 2021; Cavaliere et al.,
2020; Senatore and Marcelli, 2019b; Parziale et al., 2019). On the
contrary, the only public dataset including samples from AD patients
is the ISUNIBA dataset (Pirlo et al., 2015b). The dataset contains
handwritten traits collected from 29 AD patients and a control group
made up of 12 people. Each participant was asked to write the word
‘‘mamma’’ (i.e. Italian of ‘‘mom’’) for a given number of times. The
authors chose that word for two reasons: (i) it is one of the first words
babies learn to speak; (ii) it has been observed that it is repeated with

high frequency by people in an advanced state of AD.

http://webuser.unicas.it/fontanella/darwin
http://webuser.unicas.it/fontanella/darwin
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Table 1
List of tasks performed. Task categories are: memory and dictation (M), Graphic (G), and Copy (C).
# Description Category

1 Signature drawing M
2 Join two points with a horizontal line, continuously for four times G
3 Join two points with a vertical line, continuously for four times G
4 Retrace a circle (6 cm of diameter) continuously for four times G
5 Retrace a circle (3 cm of diameter) continuously for four times G
6 Copy the letters ‘l’, ‘m’ and ‘p’ C
7 Copy the letters on the adjacent rows C
8 Write cursively a sequence of four lowercase letter ‘l’, in a single smooth movement C
9 Write cursively a sequence of four lowercase cursive bigram ‘le’, in a single smooth movement C
10 Copy the word ‘‘foglio’’ C
11 Copy the word ‘‘foglio’’ above a line C
12 Copy the word ‘‘mamma’’ C
13 Copy the word ‘‘mamma’’ above a line C
14 Memorize the words ‘‘telefono’’, ‘‘cane’’, and ‘‘negozio’’ and rewrite them M
15 Copy in reverse the word ‘‘bottiglia’’ C
16 Copy in reverse the word ‘‘casa’’ C
17 Copy six words (regular, non regular, non words) in the appropriate boxes C
18 Write the name of the object shown in a picture (a chair) M
19 Copy the fields of a postal order C
20 Write a simple sentence under dictation M
21 Retrace a complex form G
22 Copy a telephone number C
23 Write a telephone number under dictation M
24 Draw a clock, with all hours and put hands at 11:05 (Clock Drawing Test) G
25 Copy a paragraph C
3. Data collection and feature extraction

Our handwriting data were collected according to the acquisition
protocol described in Cilia et al. (2018). The protocol includes 25 tasks,
belonging to the following categories (see Table 1):

• Graphic tasks: tested participant’s ability in writing elementary
traits; they include joining some points and drawing geometrical
figures;

• Copy tasks: evaluated participant’s abilities in repeating complex
graphic gestures, which have semantic meaning such as letters,
words and numbers;

• Memory tasks: tested the changes in writing process previously
memorized or associated with objects shown in a picture;

• Dictation tasks: investigated how handwriting varies when the
working memory is used.

The dataset contains data from 174 participants: 89 AD patients and
85 healthy people.

Participants were recruited using standard clinical tests, namely,
Mini-Mental State Examination (MMSE), Frontal Assessment Battery
(FAB), and Montreal Cognitive Assessment (MoCA). These tests use
questionnaires to assess cognitive skills covering many areas, ranging
from orientation in time and place to registration recall. We also used
the following exclusion criteria: (i) taking psychotropic medication or
any other drugs influencing cognitive abilities; (ii) too compromised
cognitive abilities, according to the evaluation of medical experts.

To avoid any bias, participants were recruited in such a way that
the two groups matched in terms of age, level of education, type of
work (manual or intellectual) and gender (see Table 2). All of them
read and signed an informed consensus form describing the purpose of
the data collection and detailing the data protection policy governing
the storage and use of their data.

3.1. Data acquisition

To acquire the data, we used a Wacom’s Bamboo tablet equipped
with a pen that allowed participants to in ink on A4 white paper sheets
placed on it. For each task, the tablet sampled the x–y coordinates of
the pen tip movements at a frequency of 200 Hz. The coordinates can
be subdivided into two categories: ‘‘on-paper’’ and ‘‘in-air’’. The first

are recorded when the pen tip touches the paper, whereas the second

3

Fig. 1. Example of data acquisition. The acquisition software records the movements
performed by the participant on the paper thanks to the use of a graphic tablet.

are recorded when the pen tip is lifted from the piece of paper within
a maximum distance of 3 cm. In the first case, the pressure exerted by
the pen tip on the paper was also sampled.

During data acquisition, the participant was sitting behind a table
in a comfortable position, with the tablet set atop the table and in
front of the participant. On top of the tablet, there was a block of
25 paper sheets, once for each task, stapled together and fixed on the
tablet by using the slot in the tablet cover. On each sheet were printed
the description of the task to be executed as well as any other data
needed, depending on the task. The tablet was connected to a PC, for
administering the test. During the test, the data acquisition software
shows on the monitor the format of the paper sheet for each specific
task and displays in real-time the movements as captured by the tablet,
as shown in Fig. 1. Once a task has been executed, the participant turns
the page, read the assignment and proceeds, and so does the operator
by using the GUI of the tool. After the test completion, the raw data
were processed to extract and store in the dataset the features described
in the following.

3.2. Feature extraction

For each task, from the raw data, i.e. (x,y)-coordinates, pressure and

timestamp, we extracted 18 features, detailed in the following.
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Table 2
Average demographic data of participants. Standard deviations are shown in
parentheses.

Age Education #Women #Men

Patients 71.5 (9.5) 10.8 (5.1) 46 44
Control group 68.9 (12) 12.9 (4.4) 51 39

Fig. 2. An example of computation of the GMRTP feature.

Total Time (TT): Total time spent to perform the entire task.
Air Time (AT): Time spent to perform in-air movements.
Paper Time (PT): Time spent to perform on-paper movements.
Mean Speed on-paper (MSP): Average speed of on-paper movements.

peed is the variation of displacement with respect to time.
Mean Speed in-air (MSA): Average speed of in-air movements.
Mean Acceleration on-paper (MAP): Average acceleration of on-paper

movements. Acceleration is the variation of speed with respect to time.
Mean Acceleration in-air (MAA): Average acceleration of in-air move-

ments.
Mean Jerk on-paper (MJP): Average jerk of on-paper movements.

Jerk is the variation of acceleration with respect to time.
Mean Jerk in-air (MJA): Average jerk of in-air movements.
Pressure Mean (PM): Average of the pressure levels exerted by the

pen tip.
Pressure Var (PV): Variance of the pressure levels exerted by the pen

tip.
GMRT on-paper (GMRTP): Generalization of the Mean Relative

Tremor (MRT) as defined in Pereira et al. (2015) and computed for
on-paper movements. MRT measures the amount of tremor in drawing
spirals and meanders. The feature is equal to the average distance
between the 𝑖th sample of the written trace and another one taken 𝑑
samples before:

1
𝑛 − 𝑑

𝑛
∑

𝑖=𝑑
|𝑟𝑖𝐻𝑇 − 𝑟(𝑖−𝑑+1)𝐻𝑇 |

here 𝑛 is the number of sample points, 𝑑 is the displacement of the
ample points used to compute the radius difference, and 𝑟𝑖 is the 𝑖th
piral radius of the handwritten trace, i.e. the distance between the 𝑖th
oint and the center of the spiral. To generalize MRT, it is crucial to
efine a reference system that is valid for a generic drawing or writing
ask. Since all tasks of the data set were acquired by using a standard
heet of paper, we took the top right corner of the sheet as origin of the
eference system. Therefore, in GMRT 𝑟𝑖 is the distance between the 𝑖th
oint of the trace and the origin of the reference system. As suggested
n Pereira et al. (2015), we set 𝑑 = 10. An example of computation of
he GMRTP is shown in Fig. 2.
GMRT in-air (GMRTA): Generalization of the Mean Relative Tremor

omputed on in air movements.
4

Fig. 3. An example of computation of the XE and YE features.

Fig. 4. An example of computation of the Dispersion Index feature. 𝐷𝐼 = 21∕110 =
.191.

Mean GMRT (GMRT): Average of GMRTP and GMRTA.
Pendowns Number (PWN): Counts the total number of pendowns

ecorded during the execution of the entire task (e.g., a continuous
ninterrupted line present a pendowns number equal to 1).
Max X Extension (XE): Maximum extension recorded along the X

xis. The maximum extension of a component along an axis is calcu-
ated considering the difference between its farthest/nearest points to
he origin on the considered axis (see Fig. 3).
Max Y Extension (YE): Maximum extension recorded along the Y

xis. Computed the same as the XE feature, but taken into account the
axis (see Fig. 3).
Dispersion Index (DI): The Dispersion Index measures how the hand-

ritten trace is ‘‘dispersed’’ on the entire piece of paper; in other words,
t measures how much of the sheet is covered. To calculate the index,
he sheet is ideally divided into TB fixed-size boxes of 3 × 3 pixels,

and then it is computed the number CB of boxes containing a fragment
of handwriting/drawing. Eventually, DI is given by the ratio between
CB and TB. An example of computation of the DI feature is shown in
Fig. 4.

4. Rationale of the experiments and benchmark architectures

As already mentioned, the test we have designed comprises 25 tasks,
targeting to different extents the brain areas involved in fine motor
planning and execution that may be affected by AD. Some of them
have been already considered in previous studies, whereas others have
been derived from recent findings in neuroscience and motor control
of handwriting.

As different tasks can elicit different handwriting alterations, in our

previous work (De Gregorio et al., 2021) we considered two scenarios.
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Fig. 5. Single classifier working on features set obtained by merging each task features
value.

The first evaluated to what extent the test as a whole is capable of
providing valuable information for the purpose concerned. Thus, for
each participant, the features extracted from each task were combined
into a unique feature vector and used to build a classifier capable of
discriminating between AD patients and healthy people, as depicted in
Fig. 5. The second, on the contrary, was designed to evaluate to what
extent the information brought by each task contributes to the final
decision. To this aim, the feature vectors extracted from each task were
used to build a task-specific classifier, and the final classification was
achieved by combining their outputs (see Fig. 6).

As the purpose of the experiments is primarily that of validating
the protocol we adopted for data collection and the features we extract
during the execution of the tasks, the architectures of Figs. 5 and 6
were implemented by adopting different classifiers, so as to mitigate the
effect of strengths and weaknesses of each classifier on performance. In
the case of the architecture in Fig. 6, the same classifier was adopted
to build the 25 task-specific classifiers to be combined, whereas in the
second case the top-performing classifiers were combined.

To evaluate whether it would be possible to reduce the complexity
of the test (and thus the time needed to administer it), for each classifier
we sorted the tasks in descending order according to the accuracy
shown by the classifier. Then, by computing the cumulative accuracy
incrementally, we were able to select the subset of tasks corresponding
to the best performance for each type of classifier. In all the imple-
mentations of the architecture depicted in Fig. 6, the outputs of the
classifiers were combined using the majority vote rule.

5. Classification models

To validate our assumptions about the protocol used for collecting
the handwriting data, as well as to evaluate to what extent the set of
features we have adopted is capable of capturing the distinctive aspects
of the two populations of participants, we have performed a set of
classification experiments, as will be described in Section 6.

To mitigate as much as possible the bias on the performance due to
the classifier, the experiments have been performed by using different
classifiers, widely used in the literature: Decision Tree, Random Forest,
Logistic Regression, K-Nearest Neighbor, Linear Discriminant Analysis,
Gaussian Naive Bayes, Support Vector Machine, Multilayer Perceptron,
and Learning Vector Quantization.

We chose these models since they: (i) are widely-used and standard
implementations are available for each of them; (ii) represent different
paradigms of classification algorithms; (iii) exhibit good performance
on a large variety of classification problems. Table 3 shows their
computation complexity ( notation), as well as the acronyms used in
the remainder of the paper.

In order to make the paper self-consistent, the following subsections
describe the main characteristics of each classifier, and provide the ref-
erences for the readers interested in further details. The classifiers were
 D

5

Table 3
Acronyms and computational complexity ( notation) of the training phase of the
classification models used. 𝑁 and 𝑀 represent the number of training samples and
the number of features, respectively. As for the other quantities involved, they are
represented as follows:
𝐿: #trees making up the ensemble (RF);
𝐸: #epochs (MLP and LVQ)
𝑃 : #neurons (MLP and LVQ).

Model Acronym Complexity

Random forest RF 𝐿𝑁𝑀𝑙𝑜𝑔2𝑁
Logistic regression LR 𝑁𝑀
K-Nearest Neighbor KNN 1
Linear Discriminant Analysis LDA 𝑁𝑀2

Gaussian Naive Bayes GNB 𝑁𝑀
Support Vector Machine SVM 𝑁2𝑀
Decision Tree DT 𝑁𝑀𝑙𝑜𝑔2𝑁
Multilayer Perceptron MLP 𝐸𝑁𝑀𝑃
Learning Vector Quantization LVQ 𝐸𝑁𝑀𝑃

implemented in Python, using the functionalities of the Scikit-Learn
library (Pedregosa et al., 2011).3

5.1. Decision tree

A Decision Tree (DT) is a decision support tool with a tree graph
structure (Breiman et al., 1984). In a DT, internal nodes represent
attribute tests, where each branch yields the outcome of the test,
whereas leaf nodes represent class labels. The paths from the root node
to the leaves represent classification rules. For the tree learning, we
used the C4.5 algorithm. This algorithm builds a decision tree with a
top down approach, by using the concept of information entropy. Given
a training set 𝑆, it breaks down 𝑆 into smaller and smaller subsets while
at the same time an associated decision tree is incrementally developed.
At each node of the tree, C4.5 chooses the attribute that most effectively
splits the corresponding subset. The splitting criterion is the normalized
information entropy gain which measures how much the subsets are
homogeneous, in terms of class labels, with respect to the split set. The
algorithm then recurs on the smaller subsets. The algorithm creates a
leaf node when one of the following base cases occur:

• all samples in the set belong to the same class. The leaf node is
labeled with that class.

• the number of instances in the set is below a certain threshold.
The leaf node is labeled with the more represented class in the
set.

• None of the features provide any information gain. The leaf node
is labeled with the most represented class in the set.

The pseudocode of C4.5 algorithm is the following:

1. Check for the above base cases.
2. For each attribute 𝑎, find the normalized information gain ratio

from splitting on 𝑎.
3. Let 𝑎𝑏 be the attribute with the highest normalized information

gain.
4. Create a decision node that splits on 𝑎𝑏.
5. Recurse on the subset obtained by splitting on 𝑎𝑏, and add those

nodes as children of the node.

5.2. Random forest

The Random Forest algorithm (RF) builds an ensemble of 𝐿 tree-
based classifiers combining two well-known strategies for inducing

3 The code developed to implement the nine classification schemes used
n the experiments detailed in Section 6 is available at the following
itHub repository: https://github.com/Natural-Computation-Lab/DARWIN-
ataset-Baseline-Performance.git.

https://github.com/Natural-Computation-Lab/DARWIN-Dataset-Baseline-Performance.git
https://github.com/Natural-Computation-Lab/DARWIN-Dataset-Baseline-Performance.git
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Fig. 6. Combined classifications for each handwriting task.
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iversity in classifier ensembles (Breiman, 2001), namely bagging and
andom subspace. These strategies induce classifier diversity generating
different training dataset for each classifier making up the ensemble.
iven a training set  consisting of 𝑁 samples, each made of 𝑀

eatures, RF builds the 𝑖th tree of the ensemble as follows:

1. Draw from  𝑁 samples at random with replacement (bagging
strategy). The resulting set will be the training set of the tree.

2. Set a number 𝐾 ≪ 𝑀 .
3. At each node, randomly draw 𝐾 features from the set of avail-

able features (random subspace strategy).
4. Among the values of each of the 𝐾 features drawn, choose the

best binary split according to the Gini index. Select the feature
with the best index value.

5. Grow the tree to its maximum size according to the stopping
criterion chosen4.

6. Let the tree unpruned.

.3. Logistic regression

Logistic regression (LR) is a linear classification algorithm that uses
he logistic function to model class probabilities (Yu et al., 2011). Given
training set of instance-label pairs (𝐱𝑖, 𝑦𝑖) 𝑖 = … , 𝑁 , where 𝐱𝑖 ∈ R𝑀

nd 𝑦𝑖 ∈ {1,−1}, LR requires the solution of the following optimization
roblem:

in
𝐰,𝑐

1
2
𝐰𝑇𝐰 + 𝐶

𝑁
∑

𝑖=1
𝑙𝑜𝑔(𝑒𝑥𝑝(−𝑦𝑖(𝐱𝑇𝑖 𝐰 + 𝑐)) + 1) (1)

To solve this problem we used the lbfgs method. It approximates the
Broyden–Fletcher–Goldfarb–Shanno algorithm (Fletcher, 1987), and it
is an iterative method for solving unconstrained nonlinear optimization
problems, recommended for small data-sets.

5.4. K-Nearest Neighbor

The K-Nearest Neighbor algorithm (KNN) is a well-known non
parametric method that can be used for both classification and regres-
sion (Bishop, 2006). According to this approach, an unknown sample
is labeled with the most common label among its k nearest neighbors
in the training set. The rationale behind the k-NN classifier is that,
given an unknown sample 𝐱 to be assigned to one of the 𝑐𝑖 classes of
the problem at hand, the a-posteriori probabilities 𝑝(𝑐𝑖|𝐱) of 𝐱 may be
estimated as follows:

𝑝(𝑐𝑖|𝐱) = 𝑛𝑖∕𝐾

where 𝑛𝑖 is the number of samples among the 𝐾 nearest neighbor of 𝐱
belonging to the 𝑖th class.

4 Node splitting usually is stopped when one of the following conditions
ccur: (i) The number of samples in the node to be split is below a given
hreshold; (ii) the samples in the node belong to the same class
6

5.5. Linear discriminant analysis

Linear discriminant analysis (LDA), is a generalization of the Fisher’s
linear discriminant method, which finds the linear combination of
features that best characterizes or separates two or more classes (Duda
et al., 2001). The resulting combination may be used as a linear
classifier, or, more commonly, for dimensionality reduction before later
classification.

Given a training set  of instance-label pairs  = {(𝐱1, 𝑦1),… , (𝐱𝑁 ,
𝑁 )}, where 𝐱𝑖 ∈ R𝑀 and 𝑦𝑖 ∈ {0, 1}, LDA assumes that the conditional

probability density functions 𝑝(𝐱|𝑦 = 0) and 𝑝(𝐱|𝑦 = 1) are normally
istributed with the same covariance matrix: (𝝁0,𝜮) and (𝝁1,𝜮). LDA
lso assumes that 𝜮 is full ranked. Under these assumptions, the Bayes
ptimal decision criterion to label an unseen sample 𝐱 is given by the
ollowing equation:

⋅ 𝐱 > 𝑐

here
𝐰 = 𝛴−1(𝝁1 − 𝝁)

= 𝐰 ⋅
1
2
(𝝁0 + 𝝁1)

(2)

rom a geometrical perspective, 𝐰 is a vector perpendicular to the
yperplane separating the two classes. The location of the hyperplane
s defined by the threshold 𝑐

.6. Support Vector Machines

Support Vector Machines (SVMs) are supervised learning methods
ased on the concept of decision planes (Chang and Lin, 2011). These
lanes linearly separates (in the feature space) objects belonging to
ifferent classes. Intuitively, given two classes to be discriminated in a
iven feature space, a good separation is achieved by the hyperplanes
hat have the largest distance to the nearest training points belonging
o different classes; in general, the larger the margin, the lower the
eneralization error of the classifier.

While the basic idea of the SVM applies to linear classifiers, they
an be easily adapted to non-linear classification tasks by using the
o-called ‘‘kernel trick’’, which implies the mapping of the original
eatures into a higher dimensional feature space. Given a training set 
f instance-label pairs  = {(𝐱1, 𝑦1),… , (𝐱𝑁 , 𝑦𝑁 )}, where 𝐱𝑖 ∈ R𝑀 and
𝑖 ∈ {1,−1} SVMs require the solution of the following optimization
roblem:

min
𝐰,𝑏,𝝃

1
2
𝐰𝑇𝐰 + 𝐶

𝑁
∑

𝑖=1
𝜉𝑖

subject to 𝑦𝑖(𝐰𝑇𝜙(𝐱𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,
(3)
𝜉𝑖 ≥ 0
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According to the above formulation, training samples are mapped into
a higher dimensional space by the function 𝜙. SVM finds a linear sepa-
rating hyperplane with the maximal margin in this higher dimensional
space. 𝐶 > 0 is the penalty parameter of the error term. Furthermore,
𝐾(𝐱𝑖, 𝐱𝑗 ) ≡ 𝜙(𝐱𝑖)𝑇𝜙(𝐱𝑖) is called the kernel function. Typical kernels are:

linear: 𝐾(𝐱𝑖, 𝐱𝑗 ) = 𝐱𝑇𝑖 𝐱𝑗 .
polynomial: 𝐾(𝐱𝑖, 𝐱𝑗 ) = (𝛾𝐱𝑇𝑖 𝐱𝑗 + 𝑟)𝑑 , 𝛾 > 0.
radial basis function (RBF): 𝐾(𝐱𝑖, 𝐱𝑗 ) = 𝑒𝑥𝑝(−𝛾 ‖‖

‖

𝐱𝑖 − 𝐱𝑗
‖

‖

‖

2
),

𝛾 > 0
sigmoid: 𝐾(𝐱𝑖, 𝐱𝑗 ) = 𝑡𝑎𝑛ℎ(𝛾𝐱𝑇𝑖 𝐱𝑗 )

𝑑 .

Here 𝛾, 𝑟, and 𝑑 are the kernel parameters.

5.7. BayesIan network

A Bayesian network (BN) is a directed acyclic graph that encodes a
joint probability distribution over a set of random variables. A node
in the graph represents a variable and an arc between two nodes
encodes the conditional dependencies between them. The structure of
a BN is useful to factorize the joint probability in the product of local
terms, i.e. the conditional probabilities. Such a factorization makes it
easier and faster to compute the joint probability. Furthermore, the
conditional dependencies that come out from the graph are useful for
further analysis. When we use a BN as a classifier we consider the label
𝑐 and each attribute (feature) of the set 𝐴 = {𝑥1,… , 𝑥𝑀} as a random
variable. Once learned, given an unseen sample 𝐱 ∈ R𝑀 , a BN assigns
to 𝐱 the label 𝑐 that maximizes the posterior probability 𝑝(𝑐|𝑥1,… , 𝑥𝑀 ).
Furthermore, known the conditional dependencies between the class
and the attributes, the label 𝑐 can be computed using the following
equation:

̂ = argmax
𝑐

𝑝 ( 𝑐 ∣ 𝑝𝑎𝑐 )
∏

𝑥𝑖∈𝑂
𝑝 ( 𝑥𝑖 ∣ 𝑝𝑎𝑥𝑖 )

where 𝑝𝑎𝑐 are is the set of attributes 𝑥𝑖 linked to 𝑐 with an incoming
arc, whereas the set 𝑂 contains the attributes linked with 𝑐 with an
outgoing arc from 𝑐.

5.8. Gaussian Naive Bayes

A Naive Bayes classifier is a Bayesian network, relying on two
simplifying assumptions. The first assumes that the predictive attributes
are conditionally independent given the class, whereas the second
assumes that no hidden or latent attributes influence the prediction
process. These assumptions imply that in a naive Bayesian classifier
the only possible arcs are those directed from the class node to the
attribute (feature) nodes. Therefore, once the network is learned, an
unseen sample 𝐱 is assigned to the class 𝑐 that maximizes the posterior
probability 𝑝(𝑐|𝑥1,… , 𝑥𝑚), according to the following equation:

̂ = argmax
𝑐

𝑝 ( 𝑐 )
∏

𝑥𝑖∈𝑂
𝑝 ( 𝑥𝑖 ∣ 𝑐 )

A Gaussian Naive Bayes (GNB) classifier deals with continuous data,
nd is based on the assumption that the continuous values are normally
istributed Hastie et al. (2009). In practice, for a continuous attribute
, average and variance are computed for each class. Let 𝜇𝑘 and 𝜎2𝑘 the

mean and the variance of the values in 𝑥 associated to the class 𝑐𝑘, then
the probability density of a value 𝜈 given a class 𝑐𝑘 𝑝(𝑥 = 𝜈 ∣ 𝑐𝑘) can be
computed using the equation for a normal distribution parameterized
by, 𝜇𝑘 and 𝜎2𝑘:

𝑝(𝑥 = 𝜈 ∣ 𝑐𝑘) =
1

√

2
𝑒
− (𝜈−𝜇𝑘 )

2

2𝜎2𝑘
2𝜋𝜎𝑘 e

7

5.9. Multilayer Perceptron

A Multilayer Perceptron (MLP) is an information processing system
made up of a number of simple, highly interconnected processing
elements called neurons (Rumelhart et al., 1986). The output of the 𝑖th
euron is the activation function of a weighted sum of its input:

𝑖 = 𝑓𝑎(𝑤0 +
𝑛𝑖
∑

𝑗
𝑤𝑗 ⋅ 𝑥𝑗 )

typical activation functions are: sigmoid, hyperbolic tangent, Rectified
Linear Unit (ReLU).

NN topologies are usually organized in layers. The patterns are
presented to the network via the ‘‘input layer’’, whereas the final
answer is provided through an ‘‘output layer’’. Once the network topol-
ogy has been chosen, a NN must be trained by providing as input a
set of labeled samples. We used a feed-forward completely connected
network, trained by using the back-propagation algorithm (Goodfellow
et al., 2016).

5.10. Learning vector quantization

Learning vector quantization (LVQ) is a prototype-based supervised
classification algorithm (Kohonen, 1995). In a feature space of di-
mension 𝑀 , the solution of a LVQ system is represented by a set of
prototypes (neurons):

𝑊 = {𝐰1,… ,𝐰𝑃 }, 𝐰𝑖 ∈ R𝑀

The LVQ training algorithm, for each data point, determines its nearest
prototype according to a given distance measure. The position of this
so-called winner prototype is then adapted, i.e. the winner is moved
nearer if it correctly classifies the data point or moved away if it
classifies the data point incorrectly.

Given a training set  = {(𝐱1, 𝑦1),… , (𝐱𝑁 , 𝑦𝑁 )}, 𝐱𝑖 ∈ R𝑀 , the LVQ
lgorithm can be outlined as follows:
egin
Initialize the weights of the labeled neurons in:
𝑊 = {(𝐰1, 𝑐1),… , (𝐰𝑃 , 𝑐𝑃 )}, 𝐰𝑖 ∈ R𝑀

for 𝑗 = 1 to 𝐸 do
for 𝑖 = 1 to 𝑁 do
find 𝐰𝑚, the nearest neuron to 𝐱𝑖
if (𝑐𝑖 == 𝑦𝑖) then

𝐰𝑚 = 𝐰𝑚 + 𝜂 ⋅ (𝐱𝑖 − 𝐰𝑚)
else

𝐰𝑚 = 𝐰𝑚 − 𝜂 ⋅ (𝐱𝑖 − 𝐰𝑚)
end

The number of epochs 𝐸, the number of neurons 𝑃 and the learning
ate 𝜂 are parameters of the algorithm.

. Experimental results

As mentioned in the Introduction, we performed a large set of
xperiments to validate the rationale behind the design of the protocol
e used to collect the data in the DARWIN dataset, as well as to assess

he capability of the proposed feature set to allow us to effectively
iscriminate between AD patients and healthy people.

.1. Experimental protocol

To reduce as much as possible the bias introduced by the random-
ess in selecting the samples of the training and test set, we performed
wenty runs. In each run, the dataset was randomly shuffled and split
nto a training and a test set. Furthermore, to allow each classifier
o work in its best configuration, before each training, we performed
5-fold cross-validated grid search to select the best set of hyper-

arameters for the classifier. In practice, we defined a set of values for

ach parameter to be tuned, and then exhaustively tested all parameter
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Table 4
Hyperparameters ranges explored during the grid search for each classifier. Omitted
parameters are set to the default value as defined in the SciKit-Learn library.

Classifier Parameter min value Max value Step

RF MaxDepth 3 10 1
n_Estimators 100 300 50
bootstrap True False
min_samples_split 2
min_samples_leave 1

LR C 0.001 5 0.005

KNN b_neighbors 5 15 1

LDA solver svd

GNB priors 2
var_smoothing 1e−9

SVM kernel RBF, Linear
C 0.5 1.5 0.1
𝛾 0.5

DT criterion gini, entropy
max_depth 2 10 1
min_samples_split 2 5 1
min_samples_leaf 2 20 2
max_leaf_node 2 20 2

MLP activation relu, logistic, tanh
hidden_layer_size 8 20 1
learning_rate_init 0.05 0.4 0.05
max_iteration 1000
𝛼 0.0001

LVQ prototype_for_classes 1 50 5
𝛽 2 50 5
max_iter 2500

combinations. Table 4 shows the ranges of the hyper-parameters tested.
To provide an estimate of the training cost, Table 5 shows the average
computing time for training one instance of the classifier, for evaluating
the performance on the validation test during the training, and for
classifying the test set once the training was completed. These times
have been recorded during the baseline evaluation session.

A combination of the outputs of the best classifiers was also evalu-
ated, as will be explained in the following (Sections 6.4 and 6.5). In this
case, we trained and tested the combined classifiers on a new dataset
partition, and repeated the 5-fold cross-validated grid search.

6.2. Baseline evaluation session

In the first experiment, we evaluated the performance of the clas-
sifiers by using as feature set the union of the features extracted from
each of the 25 tasks. Table 6 shows the mean accuracy, the specificity
and the sensitivity achieved by each classifier. For the sake of space,
the table shows only the standard deviation of the mean accuracy, but
similar values and distribution among the classifiers were observed for
both specificity and sensitivity.

The mean accuracy values and their standard deviation shown in
the table prove that all the classifiers performed well (mean accuracy
>70%) and that the performance does not depend on the actual samples
in the training and test set nor on the randomness in the training of the
classifiers. Furthermore, a statistical analysis based on the Friedman
test (Friedman, 1937) followed by a Nemenyi post-hoc test (𝛼 =
.05) (Nemenyi, 1963) has shown that the differences in the mean ac-
uracy between the best classifiers, i.e. RF, LR, GNB and MLP, were not
tatistically significant. Overall, the results of this experiment suggest
hat, as a whole, the tasks we included in our test and the features
e extracted from their execution provide relevant information for
iscriminating between AD patients and healthy people, independently
f the adopted classifier, even though there are classification models
hat exploit to a greater extent than others the information carried
y the features. They also show that the best classifiers achieved high
ensitivity (>84%), confirming that the test can be very reliably detects
D patients.
8

.3. Classification by task

In this experiment, the classifiers were trained and evaluated on
5 different feature sets, one for each task, leading to 25 task-specific
lassifiers for each classification model. Table 7 shows, for each clas-
ification model, the mean accuracy achieved on each task, whereas
able 8 shows the mean specificity and sensitivity. The latter table
o not shows the standard deviations as their values and distribution
mong the classifiers do not differ from those shown in Table 7.

From the tables we can observe that, independently of the classifier,
he accuracy achieved on any single task by any classifier was lower
han that achieved by the same classifier in the previous experiment
see Table 6), with the exception of KNN (tasks #7 and #17), LDA (task
21) and DT (task #23), which exhibited slightly better performance

han in the previous experiment. On the contrary, the best performing
odels achieving of the previous experiment gave worse performance

n single tasks. These results confirm our assumption that different
asks elicit different aspects of handwriting movements, providing a
ore comprehensive characterization than any single task.

Even more interestingly, the results of this experiment demonstrate
hat no classifier performed best on all the tasks. Then to find the best
lassifier for each task, we performed the Friedman test (𝛼 = 0.05) to

test the null hypothesis that there were no statistically significant dif-
ferences between the accuracy distributions of the classifiers. The null
hypothesis was rejected in all 25 Friedman tests, confirming that for
each task there was at least a pair of classifiers whose performance were
significantly different. Then, the classifiers were sorted according to the
average ranks calculated by the Friedman test. We then performed a
Nemenyi post-hoc test (𝛼 = 0.05) to compare the pairs of classifiers.
The post-hoc analysis revealed that for each task, the classifier with
the highest rank had a performance that was not significantly different
from the performance of some other classifiers. These results confirmed
that for each task there was a group of best performing models. The best
model for a task was then selected by ranking the models belonging
to the group of the best performing models according to their mean
sensitivity. The 25 best classification, listed from the first to the last
task, were the following: RF, LR, LR, RF, RF, RF, LR, LDA, RF, RF, GNB,
LR, RF, RF, RF, DT, RF, MLP, RF, RF, RF, RF, DT, LR, RF.

6.4. Combining all

To obtain the final classification for each participant, and in contrast
with the first experiment in which we merged the feature sets, in this
experiment we combined the outputs of the 25 task-specific classifiers
using the majority vote decision rule (Kittler et al., 1998). We combined
them in two ways: in the first, we combined the outputs of the 25
task-specific classifiers generated by a given classification model; in the
second, we combined the outputs of the 25 best classifiers we obtained
from the previous experiment. In the following, we will refer to the first
nine systems by the acronym of the classification model (see Table 3)
used to generate the single-task classifiers, whereas we will refer to the
last implementation as 𝐵𝐹𝑇 . The results achieved by these systems are
shown in Table 9.

From the table we can observe that all multiclassifiers achieved
good performance, providing further support to our assumption that
the tasks we have designed elicit different aspects of handwriting,
and that their combination captures the distinctive aspects of the two
groups (AD patients and healthy people) better than any single task.
Furthermore, looking at the results in Tables 6 and 9 we can see that for
all classification models (except GNB) each multiclassifier performed
better than the corresponding baseline classifier in terms of overall
accuracy. In particular, the DT multiclassifier achieved the highest
accuracy, specificity and sensitivity, and the largest improvement with
respect to the baseline classifier. Finally, we can observe that the BFT
multiclassifier ranked the second best in terms of overall accuracy and
specificity.
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Table 5
Average training and testing times, expressed in seconds.

RF LR KNN LDA GNB SVM DT MLP LVQ

Time for training (No grid search) 0.3601 0.0219 0.0035 0.0648 0.0048 0.0122 0.0192 0.5725 1.6603
Time to evaluate the training set 0.0288 0.0043 0.0103 0.0040 0.0044 0.0047 0.0037 0.0067 0.0043
Time to evaluate the TestSet 0.0222 0.0018 0.0033 0.0012 0.0015 0.0014 0.0010 0.0023 0.0013
Table 6
Mean accuracy (and standard deviation), specificity, and sensitivity (expressed in percentage) of the baseline classifiers.

RF LR KNN LDA GNB SVM DT MLP LVQ

Accuracy 88.29 (±4.90) 81.86 (±7.20) 71.43 (±8.34) 72.14 (±8.44) 85.00 (±5.47) 79.00 (±7.55) 78.57 (±7.21) 83.14 (±7.97) 77.43 (±7.41)
Specificity 86.18 79.41 89.41 72.65 79.12 80.59 74.41 81.76 87.35
Sensitivity 90.28 84.17 54.44 71.67 90.56 77.50 82.50 84.44 68.06
Table 7
Mean accuracy (expressed in percentage) achieved by the classifiers on each task.

Task # RF LR KNN LDA GNB SVM DT MLP LVQ

1 65.86 (±8.22) 62.86 (±7.32) 49.47 (±9.81) 60.75 (±5.37) 63.16 (±10.69) 62.26 (±7.29) 57.44 (±8.83) 61.95 (±9.33) 62.11 (±7.61)
2 67.14 (±7.78) 62.57 (±5.93) 55.29 (±7.43) 64.71 (±5.58) 58.71 (±6.84) 60.86 (±6.75) 62.86 (±9.98) 60.14 (±6.18) 62.43 (±7.72)
3 66.57 (±8.90) 67.86 (±8.93) 51.86 (±9.19) 67.00 (±6.72) 66.29 (±8.37) 68.00 (±7.95) 62.71 (±7.84) 65.57 (±7.73) 65.29 (±7.20)
4 71.29 (±6.78) 63.57 (±8.02) 64.71 (±5.58) 61.57 (±7.21) 58.57 (±3.99) 61.43 (±7.95) 66.57 (±7.42) 71.86 (±6.77) 68.14 (±5.66)
5 72.14 (±6.35) 73.71 (±6.85) 65.86 (±5.90) 67.57 (±5.81) 71.14 (±5.24) 71.14 (±7.35) 73.71 (±7.28) 69.29 (±6.07) 71.00 (±5.10)
6 72.43 (±7.66) 74.00 (±6.81) 65.57 (±10.22) 68.57 (±6.15) 73.29 (±5.66) 74.71 (±5.73) 74.86 (±7.22) 73.14 (±6.52) 73.43 (±6.94)
7 78.00 (±7.54) 72.00 (±6.40) 72.00 (±5.76) 70.57 (±7.19) 69.57 (±6.37) 71.29 (±5.75) 71.00 (±8.41) 72.29 (±7.00) 73.29 (±7.08)
8 64.86 (±6.36) 68.71 (±8.00) 57.00 (±8.57) 69.00 (±7.43) 57.00 (±5.97) 69.86 (±8.21) 61.14 (±6.52) 71.71 (±8.18) 67.57 (±7.20)
9 77.43 (±7.69) 71.43 (±5.79) 74.86 (±5.83) 72.00 (±5.29) 55.29 (±4.07) 72.43 (±6.89) 69.29 (±6.99) 68.57 (±8.84) 72.43 (±8.66)
10 69.29 (±6.80) 68.57 (±7.81) 58.14 (±8.95) 65.71 (±6.81) 66.86 (±6.90) 67.86 (±7.91) 60.14 (±6.97) 64.14 (±9.57) 65.00 (±5.40)
11 64.86 (±6.23) 64.71 (±8.31) 53.71 (±6.12) 62.14 (±7.58) 62.00 (±5.65) 62.71 (±8.05) 62.43 (±9.65) 62.57 (±7.97) 61.43 (±7.95)
12 67.14 (±7.78) 62.57 (±5.93) 55.29 (±7.43) 64.71 (±5.58) 58.71 (±6.84) 60.86 (±6.75) 62.86 (±9.98) 60.14 (±6.18) 62.43 (±7.72)
13 66.57 (±8.90) 67.86 (±8.93) 51.86 (±9.19) 67.00 (±6.72) 66.29 (±8.37) 68.00 (±7.95) 62.71 (±7.84) 65.57 (±7.73) 65.29 (±7.20)
14 71.29 (±6.78) 63.57 (±8.02) 64.71 (±5.58) 61.57 (±7.21) 58.57 (±3.99) 61.43 (±7.95) 66.57 (±7.42) 71.86 (±6.77) 68.14 (±5.66)
15 72.14 (±6.35) 73.71 (±6.85) 65.86 (±5.90) 67.57 (±5.81) 71.14 (±5.24) 71.14 (±7.35) 73.71 (±7.28) 69.29 (±6.07) 71.00 (±5.10)
16 72.43 (±7.66) 74.00 (±6.81) 65.57 (±10.22) 68.57 (±6.15) 73.29 (±5.66) 74.71 (±5.73) 74.86 (±7.22) 73.14 (±6.52) 73.43 (±6.94)
17 78.00 (±7.54) 72.00 (±6.40) 72.00 (±5.76) 70.57 (±7.19) 69.57 (±6.37) 71.29 (±5.75) 71.00 (±8.41) 72.29 (±7.00) 73.29 (±7.08)
18 64.86 (±6.36) 68.71 (±8.00) 57.00 (±8.57) 69.00 (±7.43) 57.00 (±5.97) 69.86 (±8.21) 61.14 (±6.52) 71.71 (±8.18) 67.57 (±7.20)
19 77.43 (±7.69) 71.43 (±5.79) 74.86 (±5.83) 72.00 (±5.29) 55.29 (±4.07) 72.43 (±6.89) 69.29 (±6.99) 68.57 (±8.84) 72.43 (±8.66)
20 71.43 (±8.03) 66.43 (±6.41) 60.29 (±7.47) 67.86 (±6.41) 64.57 (±4.58) 67.29 (±7.09) 65.86 (±7.73) 65.57 (±6.39) 68.14 (±6.44)
21 72.29 (±6.56) 72.86 (±7.21) 64.43 (±7.21) 72.29 (±6.29) 67.29 (±6.52) 71.14 (±7.35) 66.00 (±7.64) 72.29 (±8.65) 69.71 (±7.38)
22 75.00 (±7.80) 67.29 (±9.15) 68.43 (±6.04) 70.00 (±6.84) 67.14 (±6.84) 68.57 (±9.63) 69.14 (±6.53) 67.29 (±6.90) 69.86 (±7.27)
23 80.00 (±5.48) 74.29 (±7.64) 68.71 (±7.21) 70.43 (±6.77) 69.14 (±6.91) 74.43 (±6.39) 82.00 (±6.75) 70.86 (±6.66) 73.00 (±6.11)
24 72.14 (±4.98) 71.43 (±5.64) 61.29 (±6.25) 67.57 (±6.51) 66.86 (±5.89) 69.43 (±6.23) 67.14 (±5.83) 69.14 (±5.91) 72.57 (±6.11)
25 73.71 (±7.79) 71.71 (±7.35) 68.43 (±6.78) 71.29 (±6.84) 67.57 (±7.26) 70.43 (±6.77) 68.86 (±7.58) 68.71 (±8.87) 68.29 (±5.93)
Table 8
Specificity (Sp) and sensitivity (Se) (expressed in percentage) achieved by the classifiers on each task.

Task # RF LR KNN LDA GNB SVM DT MLP LVQ

Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se

1 67.65 63.89 63.24 61.94 59.12 40.56 63.82 57.50 76.47 50.83 67.35 57.22 60.88 55.28 63.82 60.00 67.94 56.94
2 72.94 65.28 71.76 72.50 70.59 61.39 74.71 67.22 90.59 51.11 76.18 70.28 65.29 69.44 68.53 70.00 67.94 66.94
3 75.00 61.67 72.06 67.22 59.41 61.67 75.29 65.56 84.71 54.17 72.94 64.44 77.94 61.94 67.35 64.72 69.41 64.44
4 72.35 66.67 77.65 59.17 72.06 61.11 77.35 53.33 88.82 51.94 84.71 55.56 67.65 59.72 65.00 61.67 73.82 60.83
5 68.53 72.22 78.24 61.11 71.18 60.00 80.29 56.11 90.59 56.39 83.53 50.00 62.94 68.33 67.65 65.00 72.94 59.72
6 76.47 66.94 81.47 65.00 75.59 54.72 77.65 58.06 91.47 52.50 84.12 57.22 78.24 63.89 77.35 61.11 80.59 58.61
7 74.71 70.83 74.41 75.28 66.76 59.17 74.41 76.39 71.47 71.94 77.35 73.89 71.76 66.94 73.53 72.22 73.82 68.06
8 75.59 67.50 80.88 68.89 67.65 51.94 77.06 69.72 90.29 54.72 83.53 68.33 73.24 60.56 75.88 65.00 85.00 63.61
9 78.82 70.83 79.41 65.00 63.82 63.06 78.53 65.56 90.88 55.56 86.47 61.39 73.24 62.22 72.35 67.50 80.00 59.17
10 69.12 69.44 76.18 61.39 72.94 44.17 75.29 56.67 91.18 43.89 80.00 56.39 67.06 53.61 61.76 66.39 71.18 59.17
11 62.65 66.94 68.82 60.83 66.47 41.67 70.88 53.89 50.00 73.33 71.18 54.72 54.41 70.00 63.53 61.67 62.65 60.28
12 78.24 56.67 63.82 61.39 58.24 52.50 68.82 60.83 60.00 57.50 66.18 55.83 67.35 58.61 62.35 58.06 68.53 56.67
13 71.47 61.94 79.12 57.22 59.12 45.00 73.53 60.83 84.71 48.89 80.88 55.83 66.76 58.89 70.88 60.56 74.12 56.94
14 72.65 70.00 67.94 59.44 72.65 57.22 65.29 58.06 44.41 71.94 63.53 59.44 70.00 63.33 74.71 69.17 73.82 62.78
15 75.00 69.44 79.71 68.06 80.59 51.94 72.94 62.50 90.59 52.78 76.76 65.83 78.53 69.17 69.71 68.89 74.12 68.06
16 77.35 67.78 80.29 68.06 67.65 63.61 81.18 56.67 87.06 60.28 82.35 67.50 77.06 72.78 73.53 72.78 76.47 70.56
17 79.41 76.67 75.59 68.61 73.82 70.28 70.29 70.83 80.29 59.44 74.71 68.06 69.12 72.78 71.47 73.06 77.65 69.17
18 64.71 65.00 71.18 66.39 58.24 55.83 72.35 65.83 23.82 88.33 72.35 67.50 62.06 60.28 72.06 71.39 69.12 66.11
19 80.88 74.17 70.59 72.22 79.71 70.28 73.82 70.28 12.06 96.11 76.76 68.33 71.47 67.22 75.29 62.22 77.94 67.22
20 74.12 68.89 73.53 59.72 75.88 45.56 74.12 61.94 92.06 38.61 78.24 56.94 63.53 68.06 65.88 65.28 74.41 62.22
21 67.94 76.39 72.94 72.78 59.41 69.17 75.00 69.72 86.47 49.17 73.82 68.61 63.24 68.61 70.88 73.61 68.82 70.56
22 74.71 75.28 69.41 65.28 69.71 67.22 74.71 65.56 91.76 43.89 73.53 63.89 65.59 72.50 64.41 70.00 77.06 63.06
23 77.06 82.78 75.29 73.33 68.24 69.17 75.29 65.83 77.35 61.39 77.35 71.67 76.18 87.50 72.94 68.89 72.65 73.33
24 76.76 67.78 74.41 68.61 66.18 56.67 70.88 64.44 85.88 48.89 77.94 61.39 70.29 64.17 73.82 64.72 77.35 68.06
25 73.24 74.17 75.29 68.33 73.24 63.89 77.06 65.83 88.53 47.78 76.47 64.72 69.41 68.33 74.71 63.06 71.47 65.28
9
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Table 9
Accuracy, specificity, and sensitivity (expressed in percentage) achieved by combining the task specific
classifiers.

RF LR KNN LDA GNB SVM DT MLP LVQ BFT

Accuracy 88.57 85.71 85.71 77.14 82.86 88.57 94.29 88.57 82.86 91.43
Specificity 82.35 88.24 94.12 88.24 94.12 94.12 94.12 88.24 88.24 88.24
Sensitivity 94.44 83.33 77.78 94.34 77.22 83.33 94.44 88.89 77.78 94.44
Table 10
Accuracy, and number of selected tasks of the multiclassifiers combining the top basic classifiers.

RF LR KNN LDA GNB SVM DT MLP LVQ BFT

Accuracy 88.57 94.29 91.43 94.29 85.71 94.28 94.29 88.57 91.43 91.43
Specificity 82.35 88.24 88.24 100 94.12 88.24 94.12 82.35 88.24 88.24
Sensitivity 94.44 88.89 94.44 88.89 77.78 100 94.44 94.44 94.44 94.44
# of classifiers 5 5 11 6 9 5 25 15 9 8
Table 11
Mean accuracy (and standard deviation), specificity, and sensitivity (expressed in percentage) achieved using a single classifier merging the features from the best tasks.

RF LR KNN LDA GNB SVM DT MLP LVQ

Accuracy 85.29 (±6.03) 83.86 (±4.57) 77.29 (±7.15) 61.43 (±8.32) 85.14 (±5.53) 81.86 (±4.57) 78.57 (±7.21) 82.71 (±6.52) 82.29 (±4.41)
Specificity 82.35 84.41 89.12 38.00 86.76 83.24 74.41 82.35 85.88
Sensitivity 88.06 83.33 68.00 66.88 83.61 80.56 82.50 83.06 78.89
6.5. Combining the best

The results of the second experiment (Section 6.3) proved that the
classification models implemented achieved different performance on
different tasks. To evaluate to what extent each task contributed to
characterizing the handwriting of people affected by AD, we sorted
the tasks according to the average ranks provided by the Friedman
test for each classification model. Starting with the top ranked one,
the remaining tasks were selected according to their ranking, and the
corresponding classifiers were added to the set of classifiers to be
combined. The plots in Fig. 7 shows the accuracy as function of the
number of tasks for RF and BFT. Similar trends have been observed for
the remaining classifiers, but they are not shown for the sake of space.
From the plots we can observe that the best performance was achieved
by combining the responses of a small number of the single tasks.

Table 10 shows, for each multiclassifier system, the number of
selected tasks leading to the highest accuracy, and the corresponding
specificity and sensitivity achieved. These results proved that all sys-
tems achieved the best performance by combining the outputs of at
most fifteen models, with the more parsimonious ones (RF, LR and
SVM) combining only five models. The only exception was the DT
multiclassifier that combined all models. It is worth noting that none
of the multiclassifiers achieving the highest accuracy was the best in
terms of specificity and sensitivity. It is however remarkable that the
SVM multiclassifier achieved 94.28% accuracy, 88.24% specificity and
100% sensitivity by using only five tasks.

Finally, as further combination strategy of the information from the
best performing tasks, we used an approach similar to that described
in Section 6.2. In practice, we merged the features extracted from the
subset of tasks leading to the best performance into a single feature
vector and used it to train and test each model. Table 11 shows the
mean accuracy, specificity, and sensitivity achieved by each model.
Comparing the results in Tables 6 and 11 we can see that combin-
ing only the best feature sets was beneficial for some classifiers and
detrimental for others, but in all cases the difference in terms of mean
accuracy was smaller than 6%, with the only exception being the LDA
classifier which gave a reduction of the mean accuracy of 10.71%
in comparison to the baseline classifier. Furthermore, the comparison
between Tables 10 and 11 proved that merging the feature sets did not
lead to better performance with respect to those obtained by combining

the outputs of the task-specific classifiers.
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Fig. 7. Accuracy achieved by incrementally combining classification results. The
ordered tasks are shown on the abscissa, whereas the average total time required to
execute the tasks is shown on top of the plot.
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7. Conclusions

The aim of the work reported in this paper was to show that the
analysis of handwriting is an innovative way of characterizing the
effects of AD. While there is a consistent body of literature exploiting
handwriting analysis for building automatic systems supporting physi-
cians in the early diagnosis of PD, the large majority of works on
automatic diagnosis of AD exploits neuroimaging as the main source
of data, making the procedure for data acquisition expensive, invasive
and time-consuming. On the contrary, we believe that handwriting
may offer a cheap, non invasive and easy-to-administer test to acquire
data that can be exploited to extract features useful to train machine
learning tools to help physicians diagnose earlier AD and for monitor
the effects of the treatments, pursuing patient-centered care for improv-
ing the patients’ quality of life and reducing the social cost of their
impairments.

To achieve our purpose, and recognizing that there is a lack of
public datasets to support the research community, we collected data
from 89 AD patients, at various stages of the disease, and 85 healthy
people, to build the DARWIN dataset. The dataset was collected by
adopting a protocol we have developed that comprises 25 different
tasks, that were suggested as the most appropriate to elicit different
aspects of the diseases. Each sample of the dataset, i.e. the movements
performed during the execution of a task, is described by a set of
18 features, including those adopted by other researchers for PD and
others we have derived from studies in neuroscience. The number
of participants involved and the number of tasks performed, make
the DARWIN dataset the largest currently publicly available. It was
conceived and collected with the aim of allowing other researchers
to develop and test machine learning-based systems to support the
diagnosis of AD from handwriting, and provide a common ground for
a fair comparison of the developed methods with the state-of-the-art
solutions we have presented here.

To ascertain to what extent the dataset contains useful information
to develop decision support system based on machine learning method-
ologies to help physicians diagnosing as early as possible the insurgence
of AD, we evaluated the performance of nine different classification
models, selected among the top performing and most widely used in
the field. We have also implemented twenty multiclassifier systems,
varying the classification model adopted to build the basic classifiers
and using different strategies to build the pool of classifiers to be
combined.

The results in Sections 6.2 and 6.3 prove that using a feature vector
made of the 18 features extracted from the 25 tasks, totaling 450
features, led to better performance than those achieved by using as
feature vector the 18 features extracted from any given task, with a
few exceptions. Furthermore, statistical analysis has confirmed that: (i)
there is a pool of classifiers whose performance are significantly better
than those of the other ones; (ii) for each task, there is a classifier that
performs better than the others. All together, these results support our
hypothesis that including different tasks in the test allow us to gather
information that characterize the handwriting of AD patients better
than any single task. Furthermore, these results prove that the classi-
fiers we have developed, with the exception of KNN and LDA, achieved
a mean accuracy between 78.57% and 88.29%, confirming that the set
of features we have adopted, as a whole, is capable of capturing the
distinctive aspects of handwriting to effectively discriminate between
AD patients and healthy people.

As it turned out that different classification models achieved dif-
ferent performance on different tasks, we designed and performed a
second set of experiments, by building, for each classification model,
as many models as the number of tasks, each working with the vector
of 18 features extracted from a single task, and eventually combining
their outputs by majority voting. We also built the BFT multiclassifier
system by selecting for each task the top performing classifier and then
combining their outputs as in the previous case. The results of these
11
experiments have shown that the multiclassifiers built by combining
the outputs of the 25 basic classifiers outperform the baseline classifier
they are based upon in terms of mean accuracy, except GNB, whose
mean accuracy drops from 85.00% to 82.76%. Six of them, namely
the KNN, LDA, SVM, DT, MLP and LVQ multiclassifiers improved the
performance also in terms of specificity and sensitivity. The results of
this experiment also show that the BFT multiclassifier achieved similar
performance than those exhibited by the top performing multiclassifier
built by using the same classification model on each task. All together,
and from a different perspective, these results provide a further support
to our hypothesis that the different tasks included in our protocol
allow us to gather information that characterizes the handwriting of
people affected by AD better than a single task, independently of the
classifier. Furthermore, our results suggest that the best way to exploit
the information brought by the feature sets extracted from different
tasks is that of combining the results of the classification on each
feature set rather than combine the feature sets into a single one and
build a single classifier.

Finally, we investigated the relevance of each task on the final
output. For this purpose, for each classification model we ranked
the tasks according to the accuracy achieved by the model on the
corresponding feature set, and then incrementally added the outputs
of the model to the outputs to be combined by majority voting, so
as to find the smallest set of tasks whose corresponding models need
to be combined to achieve the best performance. These results show
that the multiclassifiers exploiting a subset of the tasks achieved the
same or better performance with respect to the multiclassifiers using
all tasks, with many of them achieving more than 90% in terms of
mean accuracy, specificity and sensitivity. At last, but not least, for each
basic classification model we merged the feature extracted from the top
performing tasks and used them to train the model. Overall, the results
of these experiments suggest that it is possible to design simpler test to
be administered, consequently reducing the amount of time required to
carry out the test up to more than 50%.

From an application point of view, we believe that the combination
of the performance achieved by the top performing multiclassifier
systems in terms of accuracy and sensitivity, together with the short
time needed to execute the test, may eventually favor the adoption of
the test by physicians, particularly family doctors and neurologists, for
an early diagnosis of AD. From this point of view, we consider that the
multiclassifier combining the five top performing SVM-based classifier
exhibited the best trade-off between performance, time for executing
the test and the total time for training the system. On the other hand, as
it has been observed that the interpretability of the criteria used by AI-
based systems to reach a decision is a factor of paramount importance
to determine the acceptance by doctors, the DT-based multiclassifier
may represent a better alternative, but it involves a larger number of
tasks, leading to longer times for executing the test.

It is worth noting that we did not report any comparison with the
performance presented in Werner et al. (2006), Pirlo et al. (2015a),
Garre-Olmo et al. (2017), Kahindo et al. (2018) and Ishikawa et al.
(2019) as they were obtained on different datasets, so that a di-
rect comparison is meaningless. On the contrary, the experiments re-
ported in Cilia et al. (2019b,c,a) used the same dataset, although with
different features/classifiers and fewer tasks. The results reported in
those papers show that our method outperforms any combination of
features/classifiers used in those studies.

Although the performance achieved in our experiments compares
favorably with the state of the art, there is still room for improvement.
For instance, as an alternative to the task selection procedure we have
presented here, we will use feature selection techniques applied to the
feature set of each task, to further improve the performance of our
approach. We will also develop stacking-based approaches to combine
the responses provided by the models trained on each single task, for
achieving a more accurate final prediction of the cognitive state of the

people being analyzed.
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