
Complex Networks to Analyze Public

Transportation Systems using R

Version 2.0

Keiko Verônica Ono Fonseca

Marcelo de Oliveira Rosa

Ricardo Lüders

September 10, 2019

Abstract

Complex networks is a useful tool to analyze graph structures presenting
some particular statistical behaviors. One of these structures is the public
transportation system (PTS) of major worldwide cities. In our case, we
focused on studying Brazilian PTS like São Paulo and Curitiba. To assist
our students, we wrote this handout in order to give them a quick access to
tools like R (a powerful statistical tool) and igraph (a package that deals
with Complex Networks). In a short period of time they will be able to
(hopefully) understanding the possibilities that these tools can o�er.

Keiko Verônica Ono Fonseca
Marcelo de Oliveira Rosa

Ricardo Lüders

i

Contents

1 Introduction 1

2 R for students 2

3 Complex Networks on R 4

3.1 Preparing the land . 4
3.2 Creating a graph . 5

3.2.1 From data frame . 5
3.2.2 A simple PTS . 7
3.2.3 Creating synthetic networks 9

3.3 Metrics . 10
3.3.1 Degree . 11
3.3.2 Shortest path length 11
3.3.3 Network centrality . 12
3.3.4 Clustering coe�cients 13
3.3.5 Network Modularity 14
3.3.6 Weighted Networks . 14

4 Maps on R 15

4.1 Installing map support . 15
4.2 Plotting a few maps . 15
4.3 Real data: Curitiba . 17

4.3.1 Creating a graph for Curitiba 19
4.3.2 Plotting bus line(s) . 22
4.3.3 Combining metrics and maps 25

5 Conclusion 29

ii

Chapter 1

Introduction

Mathematically, a complex network is a big graph with some particular sta-
tistical behavior. As a graph, it is formed by a group of vertices (or nodes)
whose edges (or links) are set according to some behavior between those ver-
tices. For example, to map public transportation systems (or PTS's), each
vertex could represent a bus stop while the existence of bus lines traversing
two given bus stops would determine the existence of a link between them.

Therefore, the essential part of modeling a complex network involves es-
tablishing the meaning of the vertices and the formation rule for creating
edges between these vertices. Sometimes it is possible to build meaning-
less complex networks due to inconsistent understanding of what should be
vertices and edges.

Once a good representation is conceived, we can use tools like R and
igraph to extract numeric results to answer questions raised from the model
like identifying critical paths or critical locations in a network, for example.

This work was written to be used after a lecture on complex networks.
So we assumed that you had such a lecture previously and now is ready to
work with such networks.

1

Chapter 2

R for students

R is a computer tool to perform statistical analysis. It is a free software
that can be installed on several operational systems (Linux, Windows, Ma-
cOS). It has a interpreted programming language (di�erent from compiled
programming language as C, for example).

The normal package that you download from
https://www.r-project.org/ comes with a minimal set of libraries
along with a interpreter shell (shell is a computer software that reads
commands you digit, interpret them, execute them, and show their results).
Alternatively, it is possible to �nd some R's implementations that uses
a graphic interface to help the statistical analysis you want to perform.
One of these graphical interfaces is RStudio. It can be downloaded from
https://www.rstudio.com/ (you still need to have R downloaded and
installed in your computer before running RStudio due to ownership issues).

Below we list a few useful commands that you can use directly from the
shell:

• What can I do?

The function help.start() shows html-based information that helps
you to take the �rst steps in R. Once you get to know the basic func-
tions, you can use ?<function> to have information about a particular
function in R (named <function>).

There is also the function demo() to guide you through some examples
of statistical analysis that you can perform on R.

• Quitting the shell

The �rst basic command you have in R is quitting the shell after having
used it. Use q(). After that, R will ask you if you want to save all the
variables you have now (to list them, use ls() in a single �le that you
can load latter).

• Listing all variables in use

2

3

Variables are created on R in similar way as in general computer lan-
guages (as C or Pascal). For example:

a = 0

or

a ←0

means that a variable a will be created and receive the value 0.

To list all the variable you have currently available, you can use the
function ls().

• Removing one variable

The function rm() is used to remove a variable. For example, to remove
a variable named a, you write

rm(a)

If you want to remove all the variables, you write

rm(ls())

that means you need to list all the variable �rst in order to remove
each of them, individually.

• Seeing the content of a variable

In R, you just need to write the name of the variable to see its content.

• Running a custom code that you've developed

Instead of simply typing all functions in R' shell, you can put all your
functions in a form of a R's code in a text �le. Normally the name of
the �le carries the extension .R (although you are not required to add
it to your �le).

Let us assume you typed a bunch of lines in your favorite text editor
and you saved in a �le name /home/user/my_amazing_code.R. To run
it in R' shell, simply type:

source(/home/user/my_amazing_code.R)

Any error or warnings will refer to a line in this �le (to help you get
rid of them).

• Setting up a working directory (for �le operations, like reading or writ-
ing a �le).

Use function setwd() as:

setwd('dir1/dir2/')

Chapter 3

Complex Networks on R

Here we want to describe how to build complex networks and calculate met-
rics on R.

3.1 Preparing the land

As mentioned before, R has several libraries (named packages in R) to expand
its statistical analysis abilities. In case of Complex Networks, we will use a
library called igraph, which can be installed through the following steps:

1. At R' shell, write:

install.packages(igraph)

2. R will ask you to choose a server around the world to download this
package. Choose one near you to speed up the process;

3. Depending on the package, R has to download other dependent pack-
ages, or simply install the one you choose.

4. After that you will have the package installed on your system.

To use the package you need to write

require(igraph)

in order to have it loaded. It is also possible to call library(igraph),
however it is recommended to use require() because this function is suitable
in subroutines or custom functions that you may build in the future.

4

5

3.2 Creating a graph

Formally a graph G(V,E) is de�ned from two mathematical sets: V is the
set of vertices, and E is the set of edges. An edge is an ordered pair of two
elements belonging to V (or (a, b)|a, b ∈ V).

Another way to mathematically conceive a graph is from its adjacent
matrix A. Be N the number of elements in V , A is a N × N (squared)
matrix whose elements Ai,j = 1 if there is an edge (Vi, Vj) ∈ E, or Ai,j = 0
otherwise.

If A is symmetric (Ai,j = Aj,i), then the graph is undirected, which means
there is no di�erence preferential order in taking edges (Vi, Vj) or (Vj , Vi).
Otherwise the graph is a directed graph.

Adding weight to graph edges can be done by using a weighted version
of A: instead of setting Ai,j = 1, we can use a di�erent value representing
the weight we want to set to such an edge. We should remember that setting
Ai,j = 0 means lack of any connection between Vi and Vj .

In R, there are several ways to create a graph. We must remember that
we need to create a variable that a graph and all information related to it.

3.2.1 From data frame

Data frame is a R' structure that resembles a table: each line could be seem as
a di�erent object in a set, and each column describes one of its characteristics.
R has functions to directly work on it (for example, statistically summarizing
it).

Applying graph_from_data_frame() over a data frame (or two - see R's
help for this function), it is possible to create a simple graph (we will use
PTS entities in the examples to give a context to them):

df1 ←data.frame(

from = c('STOP1', 'STOP2', 'STOP3', 'STOP4', 'STOP5',

'STOP6', 'STOP7', 'STOP8', 'STOP9', 'STOP10'),

to = c('STOP2', 'STOP3', 'STOP4', 'STOP5', 'STOP6',

'STOP7', 'STOP8', 'STOP9', 'STOP10', 'STOP1'))

line_1 ←graph_from_data_frame(df1)

line_1

summary(line_1)

plot(line_1)

As you can see, we created a directed graph representing the bus stops
in a line (we named this graph as line_1) with 10 bus stops following the
direction that its vehicles traverse them.

Additionally we used plot() function to get a graphical representation
of it where we see the graph vertices represented as circles and the ordered

6

edges as arrows. Typing the name of the graph variable or using summary

function allows you to have a brief information about this graph.
In this example you can also see that we declared a data frame with

two variables (from and to) since graph_from_data_frame() requires the
presence of these column names in the data frame, so it can understand as
the beginning and ending of the edges.

The function c() declares a vector in R. In this example, we are declaring
two vectors of the same size, both containing strings.

To get more detailed information about the graph, we can type the fol-
lowing functions:

vcount(line_1)

ecount(line_1)

V(line_1)

V(line_1)$name

E(line_1)

as_adj(line_1)

line_1 ←graph_from_data_frame(df1, directed = FALSE)

E(line_1)

as_adj(line_1)

plot(line_1)

ends(line_1, es = E(line_1))

E(line_1)[from('STOP1')]

ends(line_1, es = E(line_1)[from('STOP1')])

ends(line_1, es = 5)

V(line_1)

V(line_1)[1]$name ←'START_STOP'

plot(line_1)

V(line_1)['START_STOP']$name ←'STOP1'

plot(line_1)

Functions E() and V() respectively extract the edges and vertices of a
given graph variable. In this new example, we showed how to construct an
undirected graph using the same data frame. Graphically we see a change
in the edges, since they have no orientation anymore.

Both adjacent matrices were obtained by using function as_adj(). Note
how naturally this graph representation indicates the relationship between
the graph vertices.

Function ends() extracts one or more edges from a given graph vari-
able while E()[from()] (and, or course E()[to()]) retrieves edges having
a speci�c starting vertex (or a ending vertex).

Finally, it is possible to change parts of a given graph using the attribute
operator <-. In this example, we changed the name of a bus stop and then
reverted the operation.

7

3.2.2 A simple PTS

Using the result from previous examples, we are now capable of representing
a simple PTS as a graph in R. In our example, we are considering 4 bus lines
(it could be metro lines or whatever public transportation system we want).

df2 ←data.frame(

from = c('STOP1', 'STOP11', 'STOP12', 'STOP6', 'STOP13',

'STOP14', 'STOP15', 'STOP7', 'STOP16', 'STOP17',

'STOP18', 'STOP19'),

to = c('STOP11', 'STOP12', 'STOP6', 'STOP13', 'STOP14',

'STOP15', 'STOP7', 'STOP16', 'STOP17', 'STOP18',

'STOP19', 'STOP1'))

line_2 ←graph_from_data_frame(df2, directed = FALSE)

df3 ←data.frame(

from = c('STOP11', 'STOP20', 'STOP10', 'STOP19', 'STOP21',

'STOP22', 'STOP23', 'STOP24', 'STOP25', 'STOP2'),

to = c('STOP20', 'STOP10', 'STOP19', 'STOP21', 'STOP22',

'STOP23', 'STOP24', 'STOP25', 'STOP2', 'STOP11'))

line_3 ←graph_from_data_frame(df3, directed = FALSE)

df4 ←data.frame(

from = c('STOP1', 'STOP2', 'STOP25', 'STOP30', 'STOP31',

'STOP32', 'STOP33', 'STOP34'),

to = c('STOP2', 'STOP25', 'STOP30', 'STOP31', 'STOP32',

'STOP33', 'STOP34', 'STOP1'))

line_4 ←graph_from_data_frame(df4, directed = FALSE)

all_lines = line_1 + line_2 + line_3 + line_4

In this new example, we added three di�erent lines to form a 4-line PTS.
Note that some bus stops are shared among the four lines. In terms of graphs,
we simply join the set of vertices (i.e. Vline_1 ∪ Vline_2 ∪ Vline_3 ∪ Vline_4)
and the set of edges (Eline_1 ∪ Eline_2 ∪ Eline_3 ∪ Eline_4).

This kind of `adding' approach leads to a important representation of
PTS as complex network named L-space. It helps analyzes how the buses
are connected, identify the bus stops (or terminals) that are used by most
of the lines (possible point of line congestion).

However, it is possible to verify that some edges disappeared after joining
all four lines in order to form the variable all_lines. The missed edges were
the ones that repetitively occurred in more than one bus line as a result of
the union operation performed over the sets of graph edges from all the lines.

The next example allowed us to build a graph including these repetitive
edges.

all_lines_stops ←union(

V(line_1)$name, union(V(line_2)$name,

union(V(line_3)$name, V(line_4)$name)))

8

df ←data.frame(

from = c(ends(line_1, es = E(line_1))[,1],

ends(line_2, es = E(line_2))[,1],

ends(line_3, es = E(line_3))[,1],

ends(line_4, es = E(line_4))[,1]),

to = c(ends(line_1, es = E(line_1))[,2],

ends(line_2, es = E(line_2))[,2],

ends(line_3, es = E(line_3))[,2],

ends(line_4, es = E(line_4))[,2]),

color = c(rep('gray', ecount(line_1)),

rep('yellow', ecount(line_2)),

rep('red', ecount(line_3)),

rep('blue', ecount(line_4))))

all_lines_multi ←graph_from_data_frame(df, directed = FALSE)

plot(all_lines_multi, edge.width = 4)

Additionally, we included new column to a data frame used to describe
the graph called color. It is interpreted by igraph as we want to set an
attribute called color to each edge of our graph. Particularly we set di�erent
colors for di�erent bus lines (it is possible to set a color for each edge, if
necessary, or one color for all edges). Moreover, it is possible to create any
kind of attribute to each edge, and also to each vertex.

Finally we plotted a graph whose edges are thicker than the ones we
plotted in the previous examples. Now clearly we observe that stops STOP1,
STOP2, and STOP25 have more than one edge connecting them.

Such a graph is known as multi-graph. In case of PTS, it is a direct
representation of bus lines covering a city, for example. We name it as a
multi-graph L-Space representation.

Once we have this multi-graph L-Space mapped into R, it is possible to
quickly obtain L-Space representation by using simplify() function.

simplify(all_lines_multi)

all_lines

simplify(all_lines_multi) - all_lines

Clearly all_lines_multi ⊂ all_lines.
Now we will build a new representation of PTS for the same group of 4

lines. It is called P-Space representation. First we need to form a complete
graph of each bus line: it means that we create edges for all pair of vertices.
In this case, we create connections between all pair of bus stops.

Next we add the complete graphs from all bus lines (as mentioned before)
to create a P-Space graph. In the example below we used one of the functions
provided by igraph to build complete graphs (make_full_graph). Since this
function creates a graph without naming its vertices, we copied the vertex

9

names of a previous graph into this new one (for igraph, an element name
is just a new attribute, so we can easily do that).

line_1_p ←make_full_graph(vcount(line_1))

V(line_1_p)$name ←V(line_1)$name

line_2_p ←make_full_graph(vcount(line_2))

V(line_2_p)$name ←V(line_2)$name

line_3_p ←make_full_graph(vcount(line_3))

V(line_3_p)$name ←V(line_3)$name

line_4_p ←make_full_graph(vcount(line_4))

V(line_4_p)$name ←V(line_4)$name

%u% does the same as +

all_lines_p ←line_1_p %u% line_2_p %u% line_3_p %u% line_4_p

plot(all_lines_p)

Similar to the multi-graph L-Space, we can form a multi-graph P-

Space by keeping the repetitive edges between a few pair of vertices. In the
next example, we also added color to easily visualize the connection between
lines.

all_lines_stops_p ←V(all_lines_p)

df_p ←data.frame(

from = c(ends(line_1_p, es = E(line_1_p))[,1],

ends(line_2_p, es = E(line_2_p))[,1],

ends(line_3_p, es = E(line_3_p))[,1],

ends(line_4_p, es = E(line_4_p))[,1]),

to = c(ends(line_1_p, es = E(line_1_p))[,2],

ends(line_2_p, es = E(line_2_p))[,2],

ends(line_3_p, es = E(line_3_p))[,2],

ends(line_4_p, es = E(line_4_p))[,2]),

color = c(rep('gray', ecount(line_1_p)),

rep('yellow', ecount(line_2_p)),

rep('red', ecount(line_3_p)),

rep('blue', ecount(line_4_p))))

all_lines_p_multi ←graph_from_data_frame(

df_p, directed = FALSE)

plot(all_lines_p_multi, edge.width = 4)

The importance of P-Space is that we are able to determine, for example,
the number of transfers between bus lines to reach destinations, for example.
We will see it latter.

3.2.3 Creating synthetic networks

As we seen at the end of the previous section, we can create synthetic graphs
to assist you. We will present now a few possible graphs that are useful as

10

reference for studying real-world complex networks.
It is important to mention that the di�erence between complex networks

and graphs is that while the latter is related to mathematical and computing
aspects, generally dealing with synthetic models and their properties, the
former is related to big real-world models and similarities between these
models. Nowadays, analysis of social media is being done using huge graphs
whose statistical behavior may be similar to neuron connections in human
brain, for example.

random network

g_random ←erdos.renyi.game(50, 1/10)

plot(g_random, edge.width = 4)

scale-free/barabasi-albert model

g_scale_free ←barabasi.game(50, directed = FALSE)

plot(g_scale_free, edge.width = 4)

small-world

g_small_world ←sample_smallworld(1, 50, 5, 0.05)

plot(g_small_world, edge.width = 4)

In complex network studies, we have three types of networks that are
useful for comparison with real-world networks. First we have random net-

works, whose edges between pair of vertices are randomly created meaning
that there is no preferential attachment or relationship between graph ver-
tices.

Next we have scale-free networks. In such networks, a few vertices are
present in most of graph edges, acting as a hub for the rest of the vertices. If
we consider paths built between all pair of vertices, most of them will have
one of these few hubs as intermediate vertices.

Finally, small-world networks map networks where a large number of
vertices are connected to other vertices and these ones are mutually con-
nected. This situation is found in social relationships where you have two
friends, for example, that know each other. Other simpli�ed idea is that ev-
ery one can be connected to each other considering friend of friend of friends,
and so on (Six degree of Kevin Bacon).

We reinforce that these are only theoretical networks and that real-world
networks may resemble them but do not completely follow their statistical
behavior. Also, it is important to mention that they are not the only useful
complex networks available.

3.3 Metrics

Metrics are a set of numbers that measures one or more characteristics of a
graph or complex network. We will focus on a few metrics (the basic ones)
in order to assist your understanding about a given graph.

11

3.3.1 Degree

The �rst measurement found in literature is degree (ki where i is the index
of the graph vertex). It accounts the number of edges connecting the ith

vertex. In case of a directed graph, you can have degree associated to edges
come in or get out the the ith vertex.

Assuming a PTS represented in L-Space, ki/2 roughly measures the num-
ber of bus lines supported by the ith bus stop.

degree(g_random)

degree(g_scale_free)

degree(g_small_world)

mean(degree(g_random))

mean(degree(g_scale_free))

mean(degree(g_small_world))

V(g_random)$size = degree(g_random) * 2

plot(g_random, edge.width = 4)

V(g_scale_free)$size = degree(g_scale_free) * 2

plot(g_scale_free, edge.width = 4)

V(g_small_world)$size = degree(g_small_world) * 2

plot(g_small_world, edge.width = 4)

In this example, we calculated the degree of all vertices. Additionally
we plotted some synthetic graphs changing the radius of the circle that rep-
resents each vertex according to the magnitude of its degree. It help us
identifying the bus stops that sustain large number of bus lines, for example.

While in scale-free networks we observe a few vertices with large ki,
vertices in random networks naturally present similar degree (low variance).

3.3.2 Shortest path length

The shortest path length (or path length, symbolic de�ned as li,j) is the
minimum number of edges used to connect two given vertices (Vi and Vj).
For L-Space PTS's, it indicates the number of bus stops needed to traverse
two given stops (disregarding the number of bus transfers involved).

In the following example, we present the main R functions that you can
use to calculate this metric.

mean_distance(g_random)

mean_distance(g_scale_free)

mean_distance(g_small_world)

diameter(g_random)

diameter(g_scale_free)

diameter(g_small_world)

distances(all_lines)[1:10, 1:10]

distances(all_lines, 'STOP1', 'STOP3')

12

result ←shortest_paths(all_lines, 'STOP14', 'STOP31',

output = 'epath')

all_lines_path ←all_lines

E(all_lines_path)$color = 'gray'

E(all_lines_path)$width = '2'

E(all_lines_path)[result$epath[[1]]]$color = 'red'

E(all_lines_path)[result$epath[[1]]]$width = '4'

plot(all_lines_path)

rm(all_lines_path)

Note that we can calculate ⟨l⟩ (or the average of all li,j 's), a squared
matrix containing li,j for all graph vertices, the graph diameter (longest
shortest path in a given graph), and the edges connecting two given vertices.

To visualize a given shortest path (formed by a sequence of edges, but
we can also obtain a sequence of vertices) connecting two given vertices, we
added default attributes to all the edges of a graph, and set di�erent values
for these attributes to the ones belonging that shortest path.

3.3.3 Network centrality

Centrality metrics are useful to identify the most important vertices to the
network. There are several ways to measure such importance. Betweenness
and closeness centrality are two metrics based on the path length between
all pair of vertices.

Closeness centrality ranks all vertices according to how close are them to
the rest of the network. Therefore the closeness centrality of the ith graph
vertex is calculated as:

Ci =
1∑
j li,j

(3.1)

In a PTS, it can be used to identify the level of reachability of a given
bus stop in terms of how fast it takes to a user departing from that bus stop
to reach any other bus stop.

Betweenness centrality ranks all vertices according to the number of
shortest paths having them as intermediate vertices. It measures the im-
portance of a bus stop as having large number of paths passing through it.
It is computed by:

Bi =
∑

i ̸=j ̸=k

pathj,k(i)

pathj,k
(3.2)

where pathj,k corresponds to the number of shortest paths from Vi to
Vj , and pathj,k(i) corresponds to the number of shortest paths from Vi to
Vj passing through Vi. Note that Bi is a sum of fractions since both pathj,k
and pathj,k(i) can only result in zero or one.

13

In PTS, betweenness helps to identify bus stops that can receive large
amount of users since they belong to most of the shortest paths that can be
derived from a network. A failure in such bus stops could result in di�culties
to PTS managers, for example.

Both metrics are very computing intensive since they require that all
shortest paths be determined. In the example we present below, we calcu-
lated the betweenness and closeness centralities of a multi-graph L-Space
network.

betweenness(all_lines_multi)

closeness(all_lines_multi)

all_lines_centrality ←all_lines_multi

V(all_lines_centrality)$size ←
betweenness(all_lines_centrality)/5

plot(all_lines_centrality, edge.width = 4)

all_lines_centrality ←all_lines_p_multi

V(all_lines_centrality)$size ←
closeness(all_lines_centrality)*1000

plot(all_lines_centrality, edge.width = 4)

Since they are calculated at vertex level, we used their results to plot all
vertices with di�erent sizes according to their centrality values (we had to
apply some gain to the values in order to have a good visual e�ect).

3.3.4 Clustering coe�cients

Clustering coe�cient (or network transitivity) evaluates how connection
tightness between neighbor vertices. In social networks, assume that I (ver-
tex) have N friends (N vertices and N edge): this metric measures how many
of my friends are friends to each other. Therefore we have values measuring if
all of them are friends to each other (maximum clustering coe�cient) to val-
ues measuring if none of my friends have friendship among them (minimum
clustering coe�cient).

In theoretical small-world networks, we have high clustering coe�cient,
since there is a high probability of neighbor vertices been connected through
edges.

The literature presents two versions of calculating the clustering coe�-
cient of a network: the global and the local version. The former retrieves a
value representing the network metric while the later is calculated at each
network vertex (at the end, we can apply descriptive statistic to get the
distribution of this metric across the network).

transitivity(g_random, type = 'global')

transitivity(g_smallworld, type = 'global')

transitivity(g_scale_free, type = 'global')

14

mean(transitivity(g_scale_free, type = 'local')

all_lines_transitivity ←all_lines

V(all_lines_transitivity)$size ←
transitivity(all_lines_transitivity, 'local') * 100

plot(all_lines_transitivity, edge.width = 4)

3.3.5 Network Modularity

This complex network metric attempts to detect community structures in
a given network. Members (vertices) of such communities should be highly
connected to each other or present some characteristic that make them part
of a community. Therefore, there are di�erent algorithms to determine such
membership.

Next example we explore two of them. Details on how they are imple-
mented, look for igraph help (the �rst one is very memory demanding, so
be careful in using it in medium-to-large networks, as the ones we will see
later).

my_members ←cluster_edge_betweenness(all_lines)

length(my_members)

plot(my_members, all_lines)

membership(my_members)

modularity(my_members)

my_members ←cluster_walktrap(all_lines)

length(my_members)

plot(my_members, all_lines)

membership(my_members)

modularity(my_members)

3.3.6 Weighted Networks

All previous analysis consisted on assuming the weight of all edges as one.
It means that metrics as li,j counts number of edges between Vi and Vj ,
regardless the signi�cance of those edges. In communications, it means the
number of hops between those vertices.

In PTS, it is interesting to take the real distance between bus stops into
account in order to evaluate how far a passenger has to travel between two
given bus stops if he/she choose to take the shortest path (assuming wise
choices).

Graphs in R can include edge weights as edge attributes. Particularly if
we set an attribute named weight, igraph takes it into computing metrics.
We will see later (in a real-world problem) how to manage weighted complex
networks in R.

Chapter 4

Maps on R

Similar to the package igraph, there are several packages in R that deal with
maps. Here we are going to use the package ggmap. It can access maps from
Google Maps, OpenStreetMap, and Stamem Maps. Additionally, it uses low
level plotting interfaces from package ggplot2, which we will use to add
pictograph information over the maps.

4.1 Installing map support

Similar to what we did to package igraph in section 3.1, we need to install
package ggmap. So, type:

install.packages(ggmap)

choose your server to download such a package and wait for a moment.
After having it installed, type:

require(ggmap)

4.2 Plotting a few maps

The following example allows you to view di�erent maps from Stockholm.
get_map is a wrapper function that internally deals with di�erent source of
maps in a uni�ed programming interface. This is the �rst step to get useful
maps plotted.

require(ggmap)

my_stockholm ←get_map(location = 'stockholm',

maptype = 'roadmap')

ggmap(my_stockholm)

my_stockholm ←get_map(location = 'stockholm',

zoom = 13)

15

16

ggmap(my_stockholm)

my_stockholm ←get_map(location = 'stockholm',

maptype = 'watercolor', zoom = 13, source = 'stamen')

ggmap(my_stockholm)

Important: Since July 16th, 2018, Google requires an API key to use their
map service. So when some functions of ggmap access Google Maps API, it
requires such key. It is their right to ask for payments (or not) to give us
access to their service. There was one free alternative called OpenStreeMap
embedded into ggmap but it has been deactivated since OpenStreetMap own-
ers have reinforced the only user to their maps is their own site. The only
remained option is Statmem, another free alternative in ggmap. The follow-
ing code is a translation of the last R code from Google Maps to Stamen.

require(ggmap)

city_center ←c(18.068351, 59.334591)

city_region ←c(

left = city_center[1] - 0.05,

top = city_center[2] + 0.03,

right = city_center[1] + 0.05,

bottom = city_center[2] - 0.03)

my_stockholm ←get_map(city_region,

zoom = 12)

ggmap(my_stockholm)

my_stockholm ←get_map(city_region,

zoom = 13)

ggmap(my_stockholm)

my_stockholm ←get_stamenmap(city_region,

maptype = 'watercolor', zoom = 13)

ggmap(my_stockholm)

We can also mark places directly on a plotted map using functions from
ggplot2.

my_stockholm ←get_map(location = c(18.150845, 59.349610),

zoom = 12)

df_map ←data.frame(name = c('hotel', 'kth'),

lat = c(59.365165, 59.353537),

lon = c(18.239665, 18.065407))

ggmap(my_stockholm, extent = 'device') +

geom_path (aes(x = lon, y = lat), data = df_map,

size = 2, color = 'blue') +

geom_point(aes(x = lon, y = lat), data = df_map[1,],

size = 3, color = 'black') +

geom_point(aes(x = lon, y = lat), data = df_map[2,],

size = 3, color = 'red')

17

Using Stamen:

city_center ←c(18.150845, 59.349610)

city_region ←c(

left = city_center[1] - 0.10,

top = city_center[2] + 0.04,

right = city_center[1] + 0.10,

bottom = city_center[2] - 0.04)

my_stockholm ←get_map(city_region,

zoom = 13)

df_map ←data.frame(name = c('hotel', 'kth'),

lon = c(18.239665, 18.065407),

lat = c(59.365165, 59.353537))

ggmap(my_stockholm, extent = 'device') +

geom_path (aes(x = lon, y = lat), data = df_map,

size = 2, color = 'blue') +

geom_point(aes(x = lon, y = lat), data = df_map[1,],

size = 3, color = 'black') +

geom_point(aes(x = lon, y = lat), data = df_map[2,],

size = 3, color = 'red')

4.3 Real data: Curitiba

The following example uses real data from Curitiba, Brazil in order to plot
information about its PTS (data from 2016). We converted from JSON �les
provided by URBS (municipal company that organized the public trans-
portation in Curitiba) into a list of lists.

The main list consists on information about each Curitiba's bus line
(name of the line, an id and a category assigned to that). For each entry
in this list, there is a list of possible bus directions, which comprises a list
of bus stops ordered according to the direction that a bus in that direction
should traverse.

Therefore we have:
list_of_lines{ list_of_directions {list_of_bus_stops} }

Such information is stored in a �le (all_bus_stops.R, provided during
this lecture). Therefore we use it to populated R' data frames in order to
place all city bus stops over a map of the city (from Google Maps).

Additionally, we added di�erent colors to each bus stop according to the
category of its bus line (in Curitiba, all bus lines are categorized according
to their �function� to the system. Detailed information of each function in
the following R code can be obtained by typing ?function). Note that some

18

bus stops may belong to di�erent bus line categories, so we will pick up just
one of them for graphical purposes.

load('all_bus_info.R')

get bus line information

df_lines ←data.frame(index = numeric(length(all_bus_info)),

code = character(length(all_bus_info)),

name = character(length(all_bus_info)),

cat = character(length(all_bus_info)),

stringsAsFactors = FALSE)

for (i in 1:length(all_bus_info)) {

df_lines$index[i] ←i

df_lines$code[i] ←all_bus_info[[i]][[1]]

df_lines$name[i] ←all_bus_info[[i]][[2]]

df_lines$cat[i] ←all_bus_info[[i]][[3]]

}

get bus stop information

df_all_stops ←data.frame(num = character(0),

lat = numeric(0),

lon = numeric(0),

group = character(0),

cat = character(0),

stringsAsFactors = FALSE)

for (i in 1:length(all_bus_info)) {

num_of_directions ←length(all_bus_info[[i]][[4]])

if (num_of_directions==0)

next

a_line_code ←all_bus_info[[i]][[1]]

for (j in 1:num_of_directions) {

total_stops ←nrow(all_bus_info[[i]][[4]][[j]][[2]])

df_sub ←data.frame(num = character(total_stops),

lat = numeric(total_stops),

lon = numeric(total_stops),

group = character(total_stops),

cat = character(total_stops),

stringsAsFactors = FALSE)

df_sub$num ←all_bus_info[[i]][[4]][[j]][[2]]$NUM

df_sub$lat ←all_bus_info[[i]][[4]][[j]][[2]]$LAT

df_sub$lon ←all_bus_info[[i]][[4]][[j]][[2]]$LON

df_sub$group ←all_bus_info[[i]][[4]][[j]][[2]]$GRUPO

19

df_sub$cat ←df_lines[df_lines$code==a_line_code,]$cat

df_all_stops ←rbind(df_all_stops, df_sub)

}

}

removing repetition

df_all_stops ←df_all_stops[!duplicated(df_all_stops$num),]

plotting

city_center = c(mean(df_all_stops$lon), mean(df_all_stops$lat))

my_curitiba_v11 ←get_map(location = city_center, zoom = 11)

ggmap(my_curitiba_v11, extent = 'device') +

geom_point(aes(x = lon, y = lat, color = factor(cat)),

data = df_all_stops)

For Stamen, the last 4 lines can be replaced to:

a_delta = 0.001

city_region ←c(

left = min(df_all_stops$lon)-a_delta,

top = max(df_all_stops$lat)+a_delta,

right = max(df_all_stops$lon)+a_delta,

bottom = min(df_all_stops$lat)-a_delta)

my_curitiba_v11 ←get_map(

location = city_region, zoom = 12)

ggmap(my_curitiba_v11, extent = 'device') +

geom_point(aes(x = lon, y = lat, color = factor(cat)),

data = df_all_stops)

4.3.1 Creating a graph for Curitiba

Once we have data from a real PTS, we will now create a graph that incor-
porates some of geographical information of a city (Curitiba, Brazil). We
present two alternatives (out of other possible solutions) to do that. All they
relied on previous computed data using earlier examples.

In this �rst R code, we got the bus stop information (only ids and edges)
from bus lines (one or more directions) into a subgraph, and added all these
subgraphs into a L-space graph of the city. At the end, we added geographic
information (lat/lon of the bus stops, and geographic distance between them)
to plot and obtain a weighted graph of the city (distance as edge weights).

require(geosphere)

20

curitiba_l ←make_empty_graph(directed = FALSE)

df_empty ←data.frame(from = character(0),

to = character(0))

for (i in 1:length(all_bus_info)) {

num_of_directions ←length(all_bus_info[[i]][[4]])

if (num_of_directions==0)

next

df_stops_per_line ←df_empty

for (j in 1:num_of_directions) {

paste(i)

a_df ←all_bus_info[[i]][[4]][[j]][[2]]

total_stops ←nrow(a_df)

df_sub ←data.frame(from = a_df$NUM[1:nrow(a_df) - 1],

to = a_df$NUM[-1])

df_stops_per_line ←rbind(df_stops_per_line, df_sub)

}

curitiba_l ←curitiba_l +

graph_from_data_frame(df_stops_per_line, directed = FALSE)

}

feeding information of each vertex/bus stop

V(curitiba_l)[order(V(curitiba_l)$name)]$lat ←
df_all_stops[order(df_all_stops$num),]$lat

V(curitiba_l)[order(V(curitiba_l)$name)]$lon ←
df_all_stops[order(df_all_stops$num),]$lon

V(curitiba_l)[order(V(curitiba_l)$name)]$group ←
df_all_stops[order(df_all_stops$num),]$group

feeding distance (in meters) between edges

bus_stop_connection ←as_edgelist(curitiba_l)

idx_1 ←vapply(bus_stop_connection[,1],

function(key) { which(df_all_stops$num==key) },

0)

idx_2 ←vapply(bus_stop_connection[,2],

function(key) { which(df_all_stops$num==key) },

0)

E(curitiba_l)$weight ←distHaversine(

cbind(df_all_stops$lon[idx_1], df_all_stops$lat[idx_1]),

cbind(df_all_stops$lon[idx_2], df_all_stops$lat[idx_2]))

21

The next example performs the same as the last one. However, instead
of adding edge weights at the end of the code, it includes the edge weights
during the process of obtaining all subgraphs.

Characteristics of igraph slow down its performance but the idea is just
to show a di�erent way to make a graph from real data.

curitiba_l ←make_empty_graph(directed = FALSE)

df_empty ←data.frame(from = character(0),

to = character(0))

for (i in 1:length(all_bus_info)) {

num_of_directions ←length(all_bus_info[[i]][[4]])

if (num_of_directions==0)

next

df_stops_per_line ←df_empty

for (j in 1:num_of_directions) {

a_df ←all_bus_info[[i]][[4]][[j]][[2]]

total_stops ←nrow(a_df)

df_sub ←data.frame(

from = a_df$NUM[1:nrow(a_df) - 1],

to = a_df$NUM[-1],

weight = distHaversine(

cbind(a_df$LON[1:nrow(a_df) - 1],

a_df$LAT[1:nrow(a_df) - 1]),

cbind(a_df$LON[-1],

a_df$LAT[-1]))

)

df_stops_per_line ←rbind(df_stops_per_line, df_sub)

}

curitiba_l ←curitiba_l +

graph_from_data_frame(df_stops_per_line, directed = FALSE)

if(length(grep('_[[:digit:]]\\b',

edge_attr_names(curitiba_l)))) {

E(curitiba_l)$weight ←
apply(cbind(E(curitiba_l)$weight_1,

E(curitiba_l)$weight_2),

1, mean, na.rm = TRUE)

curitiba_l ←delete_edge_attr(curitiba_l, 'weight_1')

curitiba_l ←delete_edge_attr(curitiba_l, 'weight_2')

}

22

}

feeding information of each vertex/bus stop

V(curitiba_l)[order(V(curitiba_l)$name)]$lat ←
df_all_stops[order(df_all_stops$num),]$lat

V(curitiba_l)[order(V(curitiba_l)$name)]$lon ←
df_all_stops[order(df_all_stops$num),]$lon

V(curitiba_l)[order(V(curitiba_l)$name)]$group ←
df_all_stops[order(df_all_stops$num),]$group

4.3.2 Plotting bus line(s)

It is possible to get a graph from di�erent parts of Curitiba's PTS. The next
example shows how to create a graph from a speci�c bus line (020) and plot
it over the city's map (we walk over the structure called all_bus_info) in
order to �nd information about this bus line, and create a graph with it).

wanted_line_code = '020'

bus_line_graph_l ←make_empty_graph(directed = FALSE)

df_empty ←data.frame(from = character(0),

to = character(0))

for (i in 1:length(all_bus_info)) {

num_of_directions ←length(all_bus_info[[i]][[4]])

if (num_of_directions==0)

next

a_line_code ←all_bus_info[[i]][[1]]

if (a_line_code==wanted_line_code)

{

df_stops_per_line ←df_empty

for (j in 1:num_of_directions) {

a_df ←all_bus_info[[i]][[4]][[j]][[2]]

total_stops ←nrow(a_df)

df_sub ←data.frame(from = a_df$NUM[1:nrow(a_df) - 1],

to = a_df$NUM[-1])

df_stops_per_line ←rbind(df_stops_per_line, df_sub)

}

bus_line_graph_l ←
graph_from_data_frame(df_stops_per_line, directed = FALSE)

23

break;

}

}

feeding information of each vertex/bus stop

idx_1 ←vapply(V(bus_line_graph_l)$name,

function(key) { which(df_all_stops$num==key) },

0)

V(bus_line_graph_l)$lat ←df_all_stops$lat[idx_1]

V(bus_line_graph_l)$lon ←df_all_stops$lon[idx_1]

V(bus_line_graph_l)$group ←df_all_stops$group[idx_1]

feeding distance (in meters) between edges

bus_stop_connection ←as_edgelist(bus_line_graph_l)

idx_1 ←vapply(bus_stop_connection[,1],

function(key) { which(df_all_stops$num==key) },

0)

idx_2 ←vapply(bus_stop_connection[,2],

function(key) { which(df_all_stops$num==key) },

0)

E(bus_line_graph_l)$weight ←distHaversine(

cbind(df_all_stops$lon[idx_1], df_all_stops$lat[idx_1]),

cbind(df_all_stops$lon[idx_2], df_all_stops$lat[idx_2]))

plotting such a bus line

df_wanted_line_1 ←data.frame(lat = V(bus_line_graph_l)$lat,

lon = V(bus_line_graph_l)$lon)

df_wanted_line_2 ←data.frame(x = df_all_stops$lon[idx_1],

y = df_all_stops$lat[idx_1],

xend = df_all_stops$lon[idx_2],

yend = df_all_stops$lat[idx_2])

my_curitiba_v12 ←get_map(location = city_center, zoom = 12)

ggmap(my_curitiba_v12, extent = 'device') +

geom_segment(aes(x = x, y = y, xend = xend, yend = yend),

data = df_wanted_line_2) +

geom_point(aes(x = lon, y = lat),

data = df_wanted_line_1,

color = 'red')

For Stamen, the last 7 lines can be replaced to:

a_delta = 0.001

city_region ←c(

left = min(df_all_stops$lon)-a_delta,

24

top = max(df_all_stops$lat)+a_delta,

right = max(df_all_stops$lon)+a_delta,

bottom = min(df_all_stops$lat)-a_delta)

my_curitiba_v12 ←get_map(

location = city_region, zoom = 13)

ggmap(my_curitiba_v12, extent = 'device') +

geom_segment(aes(x = x, y = y, xend = xend, yend = yend),

data = df_wanted_line_2) +

geom_point(aes(x = lon, y = lat),

data = df_wanted_line_1,

color = 'red')

Following the same ideas exposed in the last example, we can plot all bus
lines of a speci�c category.

wanted_category = 'EXPRESSO'

bus_line_graph_l ←make_empty_graph(directed = FALSE)

df_empty ←data.frame(from = character(0),

to = character(0))

for (i in 1:length(all_bus_info)) {

num_of_directions ←length(all_bus_info[[i]][[4]])

if (num_of_directions==0)

next

a_wanted_category ←all_bus_info[[i]][[3]]

if (a_wanted_category==wanted_category)

{

df_stops_per_line ←df_empty

for (j in 1:num_of_directions) {

a_df ←all_bus_info[[i]][[4]][[j]][[2]]

total_stops ←nrow(a_df)

df_sub ←data.frame(from = a_df$NUM[1:nrow(a_df) - 1],

to = a_df$NUM[-1])

df_stops_per_line ←rbind(df_stops_per_line, df_sub)

}

bus_line_graph_l ←bus_line_graph_l +

graph_from_data_frame(df_stops_per_line, directed = FALSE)

}

}

feeding information of each vertex/bus stop

25

idx_1 ←vapply(V(bus_line_graph_l)$name,

function(key) { which(df_all_stops$num==key) },

0)

V(bus_line_graph_l)$lat ←df_all_stops$lat[idx_1]

V(bus_line_graph_l)$lon ←df_all_stops$lon[idx_1]

V(bus_line_graph_l)$group ←df_all_stops$group[idx_1]

feeding distance (in meters) between edges

bus_stop_connection ←as_edgelist(bus_line_graph_l)

idx_1 ←vapply(bus_stop_connection[,1],

function(key) { which(df_all_stops$num==key) },

0)

idx_2 ←vapply(bus_stop_connection[,2],

function(key) { which(df_all_stops$num==key) },

0)

E(bus_line_graph_l)$weight ←distHaversine(

cbind(df_all_stops$lon[idx_1], df_all_stops$lat[idx_1]),

cbind(df_all_stops$lon[idx_2], df_all_stops$lat[idx_2]))

plotting such a bus line

df_wanted_line_1 ←data.frame(lat = V(bus_line_graph_l)$lat,

lon = V(bus_line_graph_l)$lon)

df_wanted_line_2 ←data.frame(x = df_all_stops$lon[idx_1],

y = df_all_stops$lat[idx_1],

xend = df_all_stops$lon[idx_2],

yend = df_all_stops$lat[idx_2])

ggmap(my_curitiba_v12, extent = 'device') +

geom_segment(aes(x = x, y = y, xend = xend, yend = yend),

data = df_wanted_line_2) +

geom_point(aes(x = lon, y = lat),

data = df_wanted_line_1,

color = 'red')

4.3.3 Combining metrics and maps

Now we will overlap maps and complex network metrics in order to have
visual understanding of Curitiba's PTS. Considering the metric degree (Sec-
tion 3.3.1), we plotted �lled circles around each bus stop whose size is directly
related to the bus stop degree.

Additionally, we also varied the colors of these circles to facilitate the
identi�cation of level of vertex degrees across the city.

df_bus_stops ←data.frame(lat = V(curitiba_l)$lat,

26

lon = V(curitiba_l)$lon)

remove 'simplify' to see what's happen!

ctba_degree ←degree(simplify(curitiba_l))

df_metrics ←df_bus_stops

df_metrics$value ←ctba_degree

my_break_function ←function(x) {

seq(min(x), max(x), length.out = 6)

}

ggmap(my_curitiba_v11, extent = 'device') +

geom_point(data = df_metrics,

aes(x = lon, y = lat,

size = value, color = value)) +

scale_size_continuous(range = c(0, 3),

breaks = my_break_function) +

scale_color_gradient(breaks = my_break_function) +

guides(size = guide_legend(title = NULL),

color = guide_legend(title = NULL))

Network centrality metrics like betweenness (Section 3.3.3) also can be
viewed in the same way. The next example allows to see the betweenness of
the city network when we discard edge weights.

Since betweenness calculation is quite computing demanding, wait for a
moment until R �nishes the job.

df_bus_stops ←data.frame(lat = V(curitiba_l)$lat,

lon = V(curitiba_l)$lon)

choose: NA->unweighted NULL->weighted

ctba_betweeness ←betweenness(simplify(curitiba_l),

weight = NULL,

normalized = TRUE)

df_metrics ←df_bus_stops

df_metrics$value ←ctba_betweeness

ggmap(my_curitiba_v11, extent = 'device') +

geom_point(data = df_metrics,

aes(x = lon, y = lat,

size = value, color = value)) +

scale_size_continuous(range = c(0, 3),

breaks = my_break_function) +

scale_color_gradient(breaks = my_break_function) +

guides(size = guide_legend(title = NULL),

27

color = guide_legend(title = NULL))

We can also use what is called thermal graphs in order to perceive varia-
tion of a metric �across the city�. Package ggplot2 have a way to automati-
cally do that using geom_density_2d().

However such a function does not take into account weights associated
to the data provided to it. So we need to build a function to do that.

In the next example, we built such a function (it builds Gaussian mixtures
function according to sampling data and its weight). It also requires package
MASS installed in your system (by now you should know how to install any
package).

require(MASS)

Copied from MASS::kde2d and modified Ort Christoph

https://stat.ethz.ch/pipermail/r-help/2006-June/107405.html

kde2d.weighted ←function (x, y, w, h, n = 25,

lims = c(range(x), range(y))) {

nx ←length(x)

if (length(y) != nx)

stop("data vectors must be the same length")

gx ←seq(lims[1], lims[2], length = n) # gridpoints x

gy ←seq(lims[3], lims[4], length = n) # gridpoints y

if (missing(h))

h ←c(bandwidth.nrd(x), bandwidth.nrd(y));

if (missing(w))

w ←numeric(nx)+1;

h ←h/4

distance of each point to each grid point in x-direction

ax ←outer(gx, x, "-")/h[1]

distance of each point to each grid point in y-direction

ay ←outer(gy, y, "-")/h[2]

z is the density

z ←(matrix(rep(w,n), nrow=n, ncol=nx, byrow=TRUE) *

matrix(dnorm(ax), n, nx)) %*%

t(matrix(dnorm(ay), n, nx))/(sum(w) * h[1] * h[2])

return(list(x = gx, y = gy, z = z))

}

df_bus_stops ←data.frame(lat = V(curitiba_l)$lat,

lon = V(curitiba_l)$lon)

to correct a problem with our DATA

28

(different bus stops with same lat/lon)

df_bus_stops$lat ←jitter(df_bus_stops$lat)

choose: NA->unweighted NULL->weighted

ctba_betweeness ←betweenness(simplify(curitiba_l),

weight = NULL,

normalized = TRUE)

df_metrics ←df_bus_stops

df_metrics$value ←ctba_betweeness

a_density ←kde2d.weighted(df_metrics$lon,

df_metrics$lat,

df_metrics$value,

n=100)

df_density ←data.frame(

expand.grid(x = a_density$x,

y = a_density$y),

z = as.vector(a_density$z))

ggmap(my_curitiba_v11, extent = 'device') +

geom_contour(data = df_density,

aes(x = x, y = y, z = z), binwidth = 5) +

stat_contour(data = df_density,

aes(x = x, y = y, z = z,

fill = ..level..,

alpha = ..level..),

geom = 'polygon') +

scale_fill_gradient(low = 'green',

high = 'red',

guide = FALSE) +

scale_alpha(range=c(0, 0.30), guide = FALSE)

Chapter 5

Conclusion

The purpose of this handout is to provide information and basic concepts to
anyone interesting on using complex network approach to model systems or
process using tools like R and igraph, particularly those researching subjects
involving public transportation system or larger systems.

Here we focused on providing R codes to solve problems like visualization
of results over maps. Additionally we wanted that everyone be able to change
them in order to answer other questions related to real world problems.

What can we do more? The answer is up to you.

29

